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ABSTRACT 
 
 

In vitro-produced embryos exhibit aberrations in development, but the reasons for 

these developmental problems are unknown.  Recently, a class of small non-coding RNA 

called microRNA (miRNA) has been described and reported to have roles in normal 

mammalian embryonic development.  These miRNAs are encoded in the genome, 

transcribed by RNA pol II and processed into fragments approximately 22 nt in length by 

ribonuclease enzymes, the final one being a protein called Dicer.  miRNA work through 

the RNA-induced silencing complex (RISC), of which the argonaute gene family are key 

proteins.  Argonaute-2 (Ago2) has been identified as the only member possessing 

endonuclease activity, which is responsible for the breakdown of the miRNA target 

message.  The cDNA sequences for Dicer and Ago2 have yet to be identified in pigs.  

Our objective is to identify the cDNA sequence for porcine Dicer (pDicer) and Ago2 

(pAgo2) and verify their expression in reproductive tissue.  A PCR cloning strategy was 

implemented, using over-lapping primers generated to highly conserved nucleotide 

sequences of Dicer and Ago2 known from other species.  tcRNA was isolated from 

porcine ovaries and subjected to endpoint RT-PCR.  To generate PCR primers, the cDNA 

sequences for bovine, human, and mouse Dicer and Ago2 were aligned; primers were 

generated from highly conserved regions using the Vector NTI program.  Eight primer 

sets were designed for overlapping fragments of the pDicer sequence, and five primer 

sets were designed for pAgo2.  PCR reactions were visualized using slab gel 

electrophoresis, EtBr staining, and UV-light exposure; after which, they were subcloned 

into the pDrive Cloning Vector and subjected to dideoxy-sequencing at the Clemson 
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University Genomics Institute.  Sequences were submitted to BLAST to verify each 

fragment as pDicer or pAgo2.  Respective sequence fragments were assembled to 

generate the complete coding cDNA sequence for pDicer and pAgo2.  Sequencing 

revealed two possible splice variants for pAgo2.  Two additional primer sets were 

designed to confirm these splice variant sequences.  The obtained pDicer sequence is 

5,995 nt, contains the entire coding region, and exhibits a sequence identity of 91% to 

bovine, 90% to human, and 86% to mouse Dicer sequences.  The obtained pAgo2 

nucleotide sequence is 2,703 nt with a sequence identity of 94.2% to bovine, 92.2% to 

human, and 89.4% to mouse Dicer sequences.  The sequencing data also indicate two 

possible splice variants of pAgo2, which could indicate the presence of as yet 

unidentified Ago2 variants in other species.  Altogether, the data indicate that Dicer and 

Ago2 are present in porcine ovary and that the sequences are highly similar to those 

reported for other species.  In addition, endpoint RT-PCR indicates that both Dicer and 

Ago2 are present in porcine embryos during early embryonic development, suggesting a 

role for miRNA in early embryonic development in pigs. 
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CHAPTER ONE 
 

LITERATURE REVIEW 
 
 
Introduction  

Assisted reproductive technologies (ART) have been useful tools in the livestock 

industry for decades; and have also been utilized in human medicine to help infertile 

couples.  In spite of the usefulness of these tools, in vitro-produced embryos exhibit 

aberrations in development including decreased developmental rates and increased 

chromosomal abnormalities (McCauley et al, 2003; Hyttel et al, 2000).  However, the 

cause/effect relationship of embryo culture to these developmental issues is unknown.  

Recently, a class of small non-coding RNA has been shown to be involved in 

development, including embryonic development, and may help explain altered embryonic 

development when using ART.  These 22 nt RNA are called microRNA (miRNA).  

miRNA was shown to play a key role in embryo development when the knock-out of 

Dicer, an important protein in the production of miRNA, proved to be embryo lethal 

(Bernstein et al, 2003).  By binding to messenger RNA (mRNA) and silencing or 

degrading that message, miRNA function to regulate translation and does so via another 

protein known as Argonaute.  Argonaute is the main protein component of the RNA 

induced silencing complex (RISC) which carries miRNA to its target message RNA 

(mRNA).  Four Argonaute proteins have been identified in humans (Sasaki et al, 2003), 

only one of which, Argonaute2 (Ago2), exhibits endonuclease activity to degrade the 

mRNA to which miRNA binds (Meister et al, 2004; Liu et al, 2004).  Our objective is to 

understand the miRNA pathway in pigs, including: identifying miRNA expressed in 
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reproductive tissues (including ovary, oocytes, sperm, and embryos), describing the 

ontogeny of this pathway, and identifying the major proteins involved in the systhesis and 

action of miRNA.  The nucleotide sequence for Dicer and Ago2, have yet to be identified 

in pigs.  The objective of this study was to clone the cDNA for porcine Dicer and Ago2 

(pDicer and pAgo2, respectively), as well as verify their expression in multiple 

reproductive tissues including ovary, oocytes, sperm, and developing embryos.  We 

hypothesize that the Dicer and Ago2 sequences are highly conserved in pigs and that their 

messages are expressed in porcine embryos during the time of embryonic genome 

activation.  Further, in vitro produced embryos could be compromised due to inadequate 

levels or abnormal timing of expression of Dicer and Ago2 during development.   

 

Assisted Reproductive Technology 

For over three decades, ART has been used to assist both human and livestock 

disciplines.  In humans, these technologies are used to help overcome infertility; while in 

livestock, these technologies are useful in reducing generation intervals and increasing 

the number of offspring from genetically superior animals (Boerjan et al, 2000).  ART 

has also become an invaluable tool in biomedical research; for example, the technology 

has facilitated the creation of transgenic disease models used in studying dozens of 

human diseases (as reviewed by Matsunari and Nagashima, 2009).   

Since the birth of the first “test-tube baby” in 1978, reproductive technology has 

come a long way in its ability to overcome infertility (Sher et al, 2005).  As defined by 

the Centers for Disease Control and Prevention (CDC), ART includes all treatments or 
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procedures involving the surgical removal of oocytes from a woman’s ovaries and 

combining those oocytes with sperm in order to help a woman become pregnant (CDC, 

2008).  An ART cycle begins when a woman starts taking fertility drugs or has her 

ovaries monitored for follicular development. (CDC, 2008; Wright et al, 2006)  The next 

step is egg-retrieval; after which, the eggs are combined with sperm in the laboratory.  

The subsequent embryos are evaluated for transfer to the woman.  If the transfer is 

successful, implantation occurs and the cycle progresses to clinical pregnancy to be 

followed lastly by a live-birth delivery.  An ART cycle could also begin when frozen 

embryos are thawed in preparation for transfer to a woman (CDC, 2008).  These cycles 

do not involve egg retrieval, because the embryo has been fertilized from a previous 

cycle.  At any step in this process the ART cycle can be disrupted, either for medical 

reasons or by the patient’s choice.  In 2006, 99,199 ART cycles were performed, 

resulting in 28,404 live births (of one or more infants) (CDC, 2008). 

In human infertility clinics, common ART treatments include in vitro fertilization 

(IVF) and intracytoplasmic sperm injection (ICSI).  In vitro fertilization (IVF) involves 

extracting a woman’s oocytes, combining them with sperm, and then transferring the 

resulting embryo into the patient’s uterus (reviewed by Wang and Sauer, 2006).  A 

specialized technique known as intracytoplasmic sperm injection (ICSI) is sometimes 

used when there is a male infertility factor, such as low sperm motility or concentration 

(reviewed by Steirteghem et al, 2002).  For this technique, the sperm is manually injected 

into the oocyte for fertilization to occur.   
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Even though ART provides advantageous tools for combating infertility, 

techniques have yet to be perfected.  Table 1.1 is a clinic summary report from the 

Society for Assisted Reproductive Technology (SART) detailing the 2007 National 

Summary of ART clinics in the United States.  The percentage of fresh embryo transfers 

resulting in live births was only about 46%.  (SART, 2009).   

 

Table 1.1:  Society for Assisted Reproductive Technology 2007 National 
Summary of IVF Success Rates (www.sart.org) for fresh (not frozen) 
embryos from non-donor oocytes. 
 

Fresh Embryos From Non-Donor Oocytes (for women under 35)   

Number of cycles 38,161 

Percentage of cycles resulting in pregancies 45.8 

Percentage of cycles resulting in live births 39.8 

Percentage of retrievals resulting in live births 43.1 

Percentage of transfers resulting in live births 46.1 

Implantation rate 32.6 

 

 

ART is also of great use to the livestock industry.  With the applications of in 

vitro embryo production and embryo transfer, superior genetics can be cultivated rapidly.  

Also, interest is rising in producing large quantities of matured oocytes and embryos for 

biomedical research purposes, and given their physiological similarities to humans, pigs 

have become an increasingly important livestock species for xenotransplantation, disease 

models, and carrying cell marker genes (as reviewed by Matsunari and Nagashima, 

2009). 
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Pigs have been recognized as excellent models for numerous diseases in a variety 

of areas, including:  nutrition, toxicology, dermatology, diabetes, cancer, eye diseases, 

cardiovascular diseases, degenerative joint diseases, and skeletal growth (as reviewed by 

Matsunari and Nagashima, 2009).  ART techniques such as ICSI and somatic cell nuclear 

transfer (SCNT) are used for creating these transgenic pig disease models.  SCNT is the 

process used to create genetically identical individuals (reviewed by Wilmut et al, 2002).  

In this process, the nucleus is removed from a somatic cell and inserted into a de-

nucleated oocyte.  The re-nucleated oocyte is stimulated into dividing and proceeds into 

development.  With SCNT, it is possible to create syngeneic, or genetically identical, 

individuals.  Figure 1.1 illustrates a syngeneic donor-recipient system in pigs using SCNT 

technology.  Syngeneic siblings are genetically modified to create disease models and 

individuals with fluorescent marker genes.  Because they are syngeneic, they are capable 

of avoiding transplant rejection amongst themselves, making them valuable tools for stem 

cell therapy and transplantation research.  (Matsunari and Nagashima, 2009) 

 

 

Figure 1.1:  Cloned pig model for syngeneic background for translational 
research (Matsunari and Nagashima, 2009) 
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In vitro: Maturation, Fertilization, Culture 

A study by Kikuchi in 2004 examined the development of porcine oocytes 

matured and fertilized in vitro; subsequent embryos were developed in either in vivo or in 

vitro conditions.  For the in vivo conditions, oocytes were matured and fertilized in vitro, 

and transferred to the oviducts of recipients directly after fertilization.  In contrast, for the 

in vitro blastocyst conditions, oocytes were matured and fertilized in vitro and then were 

either (1) cultured in vitro for 2 days and then transferred to recipient’s oviducts or (2) 

cultured 6 days without transfer to the oviducts of recipients.  Of the in vivo cultured 

blastocysts, 37% had developed to the blastocyst stage, with a mean cell number of 181.5 

per blastocyst.  For those cultured in vitro for 2 days or 6 days only 4.7% and 20.1%, 

respectively, developed to the blastocyst stage, most of which were still in their zona 

pellucida (indicating developmental delay); the mean cell numbers for the blastocysts 

were 58.2 and 38.4, respectively.  A second experiment examined the effect of duration 

of in vitro culture (IVC) on the ability of the embryos to develop to the fetal stage or to 

term.  Oocytes were matured and fertilized as in the first experiment, and were cultured 

in NCSU-37 media for 0, 24 or 48 hours.  Development to fetuses, after transfer, of those 

cultured for 24 and 48 was significantly lower than those that were not cultured (1.7% 

and 2.0%, respectively, versus 6.7%).  These results indicated that porcine IVM/IVF 

oocytes have high potential for developing to the blastocyst stage, but that the culturing 

conditions used were suboptimal for embryo development.  (Kikuchi, 2004)   

Wang and colleagues (1999) examined porcine embryos cultured in vitro versus 

those produced in vivo and evaluated morphology and actin filament organization.  The 
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embryos cultured in vitro showed developmental delay, fragmentation, and a decrease in 

blastocyst nuclear number, all indicative of decreased developmental ability of embryos 

cultured in vitro.  No embryo fragmentation was observed in the in vivo produced 

embryos.  These researchers suggested the problems in development were most likely 

due to suboptimal culturing conditions.   

In vitro culture conditions have higher oxygen concentrations than in vivo 

conditions, and studies have reported higher levels of reactive oxygen species (ROS) 

formation in these higher oxygen conditions (Goto et al, 1993).  A study by Yang and 

colleagues evaluated the relationship between the presence of ROS and embryo 

fragmentation in embryos produced in vitro (1998).  They found a direct correlation 

between embryo fragmentation and H2O2 concentration in the developing embryo.   

Many studies have been conducted to examine how to improve oocyte in vitro 

maturation (IVM) conditions for subsequent development, including evaluating effects of 

gonadotropins (Sha et al, 2009), epidermal growth factors (Akaki et al, 2009), leptin and 

ghrelin (Suzuki et al, 2009) on porcine oocyte maturation.  Sha and colleagues (2009) 

found that an increase of gonadotropins, including FSH, LH, and hCG, in the culture 

medium increased the percentage of oocytes that reached Metaphase II.  They also noted 

higher levels of nuclear and cytoplasm maturation with higher concentrations of 

gonadotropins.  Suzuki and colleagues, however, noted no improvement of maturation 

with the addition of ghrelin and leptin (2009).  According to a review of in vitro 

production of oocytes and embryos by Abeydeera (2002), fetal calf serum and follicular 

fluid are often used successfully for the maturation of oocytes; however, with the use of 
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these substances, exact culture conditions are difficult to reproduce, creating variability 

among laboratories.   

It is evident that in vitro produced embryos experience a high occurrence of 

abnormal embryo development.  Consequently, though all of the assisted reproductive 

technologies are valuable tools in treating human infertility, aiding livestock production, 

and advancing biomedical research, the remaining inefficiencies render their full 

potential unmet.   

 

Assessment of Embryo Quality 

 Embryo quality assessment has been largely based on attributes that can be 

observed, such as fragmentation, evenness of cellular cleavage, and cleavage rate.  

Livestock embryos are assigned grade score numbers based on the following criteria:  

regularity of shape, compactness of blastomeres, variation in cell size, color/texture of 

cytoplasm, diameter of embryo, extruded cells, regularity of zona pellucida, and presence 

of vesicles.  Grade scores for cattle are as follows:  1 – excellent/good, 2 – fair, 3 – poor, 

4 – dead/degenerating (Selk, 2009).  In 1992, an embryo scoring technique was proposed 

by Steer and colleagues for human embryo assessment.  This technique, known as the 

cumulative embryo score (CES) combines embryo morphology, cleavage rate, and 

number of embryos transferred into a single figure that represents their overall quality 

and is applied to embryo selection prior to transfer.  These criteria helped increase 

pregnancy rates from 4% to 35% in older women (Visser and Fourie, 1993).  A 

retrospective study of transferred human embryos indicated top quality embryos as:  
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absent of multinucleated blastomeres, containing four or five blastomeres on Day 2, 

seven or more cells on Day 3, and less than 20% fragmentation (Van Royen et al, 1999).   

A review by Ebner and colleages (2003), however, suggests that embryo selection 

based on morphological criteria can be imprecise, which can lead to the transfer of 

embryos that are abnormal.   For example, one study indicated that only 48% of embryos 

that would have been chosen at Day 3 for transfer or cryopreservation were chosen for 

such on Day 5/6 at the blastocyst stage (Graham et al, 2000).  However, this is somewhat 

misleading, as further culture could be contributing to the degradation of the embryo, i.e. 

a viable embryo at Day 3 may no longer be viable after 2 to 3 days of in vitro culturing. 

More recently, studies have been conducted to evaluate other non-invasive 

methods of determining embryo quality.  For example, evaluating the culture media for 

specific protein levels associated with embryo quality would give researchers a 

biochemical means to more accurately predict and measure embryo quality without 

jeopardizing embryo viability.  Such studies have evaluated embryonic platelet-activating 

factor (PAF), amino acid turnover, and soluble human leukocyte antigen-G (sHLA-G) 

(Roudebush et al, 2002; Brison et al, 2004, Booth et al, 2007; Warner et al, 2008).  

Embryonic PAF in the embryo culture media was measured and correlated with 

pregnancy outcomes.  Patients receiving embryos producing low PAF levels had 

significantly reduced pregnancy rates (60%) than those from medium or high PAF levels 

(85% and 89%, respectively) (Roudebush et al, 2002).  Assays of amino acid turnover in 

the culture media have also been evaluated as a possible means of selection (Brison et al, 
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2004, Booth et al, 2007).  The turnover of three amino acids, Asn, Gly, and Leu, was 

significantly correlated with clinical pregnancy and live birth (Brison et al, 2004).   

Gene expression studies have also been utilized to evaluate oocyte and subsequent 

embryo quality.  A recent study by van Montfoort and colleagues (2008) used microarray 

analysis to evaluate embryo viability.  Using early embryo cleavage (EEC) as a viability 

parameter, gene expression was analyzed for cumulus cells from oocytes that resulted in 

EEC and for those from oocytes that did not result in EEC.  The most differentially 

expressed genes in the oocytes that did not result in EEC were genes that are involved in 

responding to hypoxic conditions or delayed oocyte maturation (van Montfoort et al, 

2008).  A similar study by Assou and colleages (2008) demonstrated that the expression 

of specific genes – such as Bcl-2-like protein 11 (BCL2L11), phosphoenolpyruvate 

carboxykinase 1 (PCK1), and nuclear factor-IB (NFIB) – in cumulus cells was 

significantly correlated with embryo potential and pregnancy outcome and proposed that 

these genes could be biomarkers for predicting pregnancy.   

Because these gene expression studies have been conducted in human infertility 

clinics, however, researchers have been unable to compare in vitro-produced embryos 

with in vivo-produced embryos.  Evaluating gene expression in in vivo-produced embryos 

versus in vitro-produced embryos would better elucidate genetic differences as well as 

the best biomarkers for predicting those in vitro-produced embryos with the best genetic 

potential.  The flaws in differential expression studies detecting mRNA are that (1) 

protein expression should still be verified, and (2) it is now known that mRNA may be 
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present and not expressed due to post-transcriptional regulation by non-coding small 

RNA such as miRNA.  

 

MicroRNA 

MicroRNA (miRNA) has been hypothesized to have fundamental roles in 

mammalian embryonic development (Houbaviy, 2003).  An important regulator of 

translation, miRNA has a key role in RNA interference (RNAi) in one of two ways:  

inhibiting translation when imperfectly paired with messenger RNA (mRNA), or 

degrading mRNA when perfect complimentarity binding occurs (Figure 1.2).  miRNA 

are expressed during early embryonic development in all mammalian species examined 

to date (reviewed by Ouellet et al, 2006).  Therefore, it is extremely likely that the post-

transcriptional regulatory mechanism utilizing miRNA is present and active during early 

development.   

 

 

 

Figure 1.2:  Illustration of miRNA functioning in RNAi by cleavage or 
repression (Wienholds and Plasterk, 2005). 
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History 

In 1993, Lee and colleagues uncovered a novel regulatory mechanism in the 

discovery of the first miRNA, lin-4, in C. elegans.  Previous studies revealed lin-4 

represses the translation of lin-14, a protein whose concentrations affect larval 

development.  The lin-14 transcript levels are constant throughout larval development; 

the LIN-14 protein levels, however, is abundant in late stage embryos but decreases 

dramatically by later larval stages (Wightman et al, 1993).  This change in protein 

abundance without a change in transcript abundance indicates a post-transcriptional 

control mechanism.   

Analysis of the lin-4 genomic sequence elucidated that lin-4 did not encode a 

protein; instead two transcripts were identified, approximately 22 and 61 nucleotides long 

(Lee et al, 1993).  These RNA were found to be complimentary to the 3’UTR region of 

the lin-14 transcript (Wightman et al, 1993), indicating that lin-4 RNA regulated lin-14 

translation via an antisense mechanism, in which the miRNA binds to its complimentary 

target message RNA and subsequently blocks its translation. 

 In spite of this remarkable discovery, another miRNA was not discovered for 

many years, leaving the scientific community with the impression that lin-4 was an 

oddity in C. elegans.  However, the discovery of let-7 (Reinhart et al, 2000) gave rise to 

miRNA’s establishment as a new class of regulatory molecules; though this molecule was 

discovered in C. elegans, it is conserved throughout metazoans (Pasquinelli et al, 2000).  

As of March 2009, there are 9,539 miRNA sequences reported in the miRBase: Sequence 

database Registry online (release 13.0), representing over 100 species.  Also, the 
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miRBase current target database (v5) has predicted targets in over 500,000 transcripts for 

miRNAs in 24 species (Griffiths-Jones et al, 2008).  Most of the mature miRNA 

sequences, for these species, have been experimentally verified (Table 1.2).   

 
Table 1.2:  The number of published mature miR sequences from select 
species; data from the 7.0 release in 2007 (Griffiths-Jones et al, 2008). 
 

 
 

Mature miR sequences 

Distinct Forms Experimentally verified 

   Homo sapiens 555 546 (98%) 
Mus musculus 461 455 (99%) 
Danio rerio 193 183 (95%) 

Caenorhabditis elegans 135 135 (100%) 
Drosophila melanogaster 88 85 (97%) 

Arabidopsis thaliana 199 199 (100%) 
Populus trichocarpa 215 55 (26%) 

 
 
It has been estimated that mammalian genomes encode up to 1,000 miRNAs 

(Berezikov et al, 2005).  However, in the 10.0 release of the miRBase, only 54 miRNA 

sequences were reported in pigs, and none of those predicted sequences had been 

experimentally validated (Griffiths-Jones et al, 2008; Kim et al, 2008).  The first 

experimental validation of pig miRNA was published only last year, in which 25 porcine 

miRNAs were identified via sequence analysis of a cDNA library; 19 of those miRNA 

were previously unreported (Kim et al, 2008).  Currently, 77 miRNA sequences are 

reported in the miRBase for pigs, 35 of which have yet to be experimentally verified 

(Griffiths-Jones et al, 2008).  The number of predicted miRNA in pigs is likely to be so 

low due to the incomplete pig genome database; because of this, experimental approaches 

are best for identifying new porcine miRNA.   
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Synthesis 

miRNA are short, non-coding, single-stranded, ribonucleic acids encoded in the 

genome.  miRNA genes may contain their own promoters and enhancers, or be located 

within introns and exons (as reviewed by Zhao and Srivastava, 2007).  As illustrated in 

Figure 1.3, RNA polymerase II transcribes miRNA genes into primary-miRNA (pri-

miRNA) several kb long (Lee et al, 2002).  These pri-miRNA are further processed in the 

nucleus by a Ribonuclease (RNase) III enzyme, Drosha, and its double-stranded RNA-

binding domain (dsRBD) protein partner, Pasha, into pre-miRNA approximately 65-75 

nucleotides (nt) in length (Lee et al, 2003; Denli et al, 2004; Gregory et al, 2004).  This 

Drosha-Pasha Microprocessor complex leaves the pre-miRNA with a 2 nt 3’ overhang, 

which is characteristic of dsRNA cleavage by RNase III.  The pre-miRNA is then 

exported to the cytoplasm by Exportin-5 and Ran-GTP (Yi et al, 2003; Lund et al, 2004), 

which recognizes the characteristic 2 nt overhang.  Once in the cytoplasm, the pre-

miRNA is further processed by another RNase III enzyme, Dicer, and its dsRBD:  

Loquacious in Drosophila (Saito et al, 2005), or the trans-activator RNA (tar)-binding 

protein (TRBP) in mammals (Haase et al, 2005).  Dicer also recognizes and binds the 

characteristic 2 nt overhang and cleaves the pre-miRNA into a double-stranded 

microRNA (ds-miRNA) approximately 21 nt in length.  The ds-miRNA is then unwound 

and loaded into the effector complex known as the RNA-induced silencing complex 

(RISC), which will carry the miRNA to its target (Faller and Guo, 2008). 
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Figure 1.3:  miRNA synthesis (Wienholds and Plasterk, 2005). 
 

 

Function 

 As previously mentioned, miRNA are important regulators of translation.  Their 

most noted roles have been through RNA interference (RNAi) pathways that result in 

either the silencing of the target mRNA or the breakdown of targeted mRNA.  (For more 

detail, see the section “Mechanisms of Argonaute: RISC,” page 34.)  However, 

Vasudevan and colleagues (2007) demonstrated that miRNA also have a role in up-

regulating translation.  In their study, miR-369-3 up-regulated tumor necrosis factor-α 

(TNFα) mRNA during cell cycle arrest.  They found that, upon cell cycle arrest, the AU-
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rich elements (ARE) in the 3’ untranslated region (UTR) of the TNFα message was 

transformed into a translation activation signal that recruited factors associated with the 

miRNA machinery, known as micro-ribonucleoproteins (microRNP).  Two other 

miRNA, let-7 and a synthetic miRNA miRcxcr4, also activated translation of their 

respective messages.  In proliferating cells, however, all of these miRNA repressed 

translation.  This indicated that, dependent on the cell cycle, microRNP may in fact 

alternate between repression and activation of translation. 

 

Regulation 

 A recent study by Bethke and colleagues (2009) revealed a hormone-mediated 

regulatory mechanism for miRNAs in C. elegans.  The C. elegans nuclear receptor DAF-

12 regulates developmental progression in response to the environment.  In favorable 

environments, ligands bound to the DAF-12 receptor and development continues into the 

next larval stage; in unfavorable conditions, ligands were suppressed and DAF-12 

induced arrest in a particular larval stage.  This study demonstrated that, when in 

unfavorable conditions and unbound to its ligand, DAF-12 repressed miRNA expression 

and led to developmental arrest.  On the other hand, in favorable environments, DAF-12 

was bound to its ligand and activated miRNA let-7 homologs which down-regulated their 

target, hbl-l, and allowed for development to the next larval stage; illustrated in Figure 

1.4 (Bethke et al, 2009).  It is known that DAF-12 is down-regulated by let-7 during later 

stages of development, suggesting both feed-forward and feed-back loops for initiating 

larval transitions (GroBhans et al, 2005). 
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Figure 1.4:  Illustration of miRNA regulation by the nuclear hormone 
receptor DAF-12 (Bethke et al, 2009). 

 

 

Involvement in Embryonic Development 

In 2003, Bernstein and others demonstrated that disruption of the Dicer1 gene in 

mice was embryonic lethal, indicating an important role for miRNA in embryonic 

development. The Dicer1 gene was functionally knocked out; afterward, chimeric mice 

were created which were able to transmit the Dicer1 disruption through the germ line.  Of 

the mice born from these crosses, none were homozygous mutants indicating this trait is 

embryonic lethal.  In evaluating the Dicer1-deficient embryos at different developmental 

stages, it was elucidated that development is interrupted before gastrulation; embryos 

were arrested around day 7.5 (Bernstein et al, 2003).  The results of this study strongly 

indicated that miRNA pathway components are required for vertebrate development. 

Studies of individual miRNAs have revealed their involvement in specific 

developmental processes.  For example, miR-1-1 and miR-1-2 are abundantly expressed 
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in the developing heart (reviewed by Zhao and Srivastava, 2007).  Overexpression of 

miR-1 in the developing mouse results in decreased ventricular proliferation and 

expansion.  miR-196 is involved in HOX gene regulation, which is important in 

developmental patterning.  Table 1.3 lists other specific miRNAs, along with their targets 

and functions (as reviewed by Wienholds et al, 2005). 

 

Table 1.3:  Biological function of miRNA (Wienholds et al, 2005). 

miRNA Function(s) 

Ceanorhabditis elegans 

     lin-4 

 

Early developmental timing 

     let-7 Late developmental timing 

     lsy-6 Left/right neuronal asymmetry 

     miR-273 Left/right neuronal asymmetry 

Drosophila melanogaster 

     bantam 

 

Programmed cell death 

     miR-14 Programmed cell death and fat metabolism 

     miR-7 Notch signaling 

Mus musculus 

     miR-196 

 

Developmental patterning 

     miR-181 Hematopoietic lineage differentiation 

     miR-1 Cardiomyocyte differentiation and proliferation 

     miR-375 Insulin secretion 

Human and other vertebrate cell lines 

     miR-16 

 

AU-rich mediated mRNA instability 

     miR-32 Antiviral defense 

     miR-143 Adipocyte differentiation 

     SVmiRNAs Susceptibility to cytotoxic T cells 

Cancer in humans 

     miR-15-miR-16 

 

Downregulated in B-cell lymphocyte leukemia 

     miR-143, miR-145 Downregulated in colonic adenocarcinoma 

     miR-155/BIC Upregulated in diffuse large B-cell lymphoma 

     let-7 Downregulated in lung cell carcinoma 

     miR-17-92 Upregulated in B-cell lymphoma 
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Houbaviy and colleagues (2003) identified possible embryonic stem (ES) cell 

specific miRNAs.  Identified as part of a hairpin cluster and including miR-290, miR-

291-as, miR-292-as, miR-293, miR-294, and miR-295, these miRNA were expressed in 

mouse ES cells, but were not detected in differentiated ES cells or adult tissues.  A more 

recent study by Yu and colleagues (2006) elucidated that expression levels of miRNA 

targets are lower in all mouse and Drosophila tissues than in the respective embryos.  

These studies indicated a role for miRNAs in regulating pluripotency and early 

mammalian development.    

 Knockout of Dicer (and, therefore, knockout of miRNA) studies in zebrafish 

indicate that dicer mutant embryos develop normally until about Day 8 when maternal 

Dicer is no longer present.  Further studies, however, indicated that even embryos lacking 

maternal Dicer are able to develop normally for the first 24 hours, indicating that 

miRNAs are not essential for early development in the first 24 hours.  These embryos 

begin showing defects during gastrulation, brain formation, neural differentiation, 

somitogenesis, and heart development.  In mice, however, Dicer mutant embryos die 

prior to axis formation and demonstrate ES cell loss.  The difference between mice and 

zebra, in regards to development associated with miRNA loss, may be due to the 

developmental timing of each species (zebrafish develop much more rapidly than mice).   

 While miRNA involvement in developmental processes has been the focus of 

much research, less is known about the function of miRNA in fertilization.  A study by 

Amanai and colleagues (2006) identified miRNA in mouse sperm.  The levels of sperm 
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miRNA, however, were relatively low in comparison to unfertilized MII oocytes, and did 

not alter the miRNA profile after fertilization, indicating a limited role in fertilization.   

 miRNA have been identified in all tissues examined to date and have been shown 

to have important roles in developmental processes, as described above.  Timing of 

miRNA expression is also very important in these processes.  Given the important roles 

of Dicer and Argonaute2 in miRNA synthesis and function, the timing of their expression 

may be crucial to embryonic development.   

 

Dicer 

Exhibiting a molecular weight of approximately 200kDa, Dicer was first 

identified by Bernstein and colleagues in 2001 as the enzyme which produces the 

approximately 21 nt miRNA.  Dicer is an RNase III enzyme, a class of enzymes that 

show specificity for dsRNA; this made it an obvious choice when looking at potential 

enzymes involved in the miRNA production pathway.  Once identified, Bernstein and 

colleagues named this RNase III enzyme “Dicer” because of its ability to cleave RNA 

into consistently short 21 nt RNA.   

 Interestingly, in multicellular eukaryotes, the components of RNA-mediated 

silencing have significantly diversified, while in unicellular organisms there seems to 

have been a near complete loss of the RNA-silencing machinery.  Thus far, Dicer has 

been identified in all species examined, except Saccharomyces cerevisiae, (reviewed by 

Jaskiewicz and Filipowicz, 2008) and is highly conserved across species.  Plants encode 

four Dicer genes, fungus and insects encode two, while mammals encode only one 
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(reviewed by Ji, 2008).  In plants, Dicer proteins seem to be localized to the nucleus (Xie 

et al, 2004; Hiraguri et al, 2005).  In Chlamydomonas reinhardtii, a unicellular eukaryote 

that encodes three Dicer proteins, at least one Dicer (DCL1) is likely restricted to the 

nucleus (Casas-Mollano et al, 2008).  Mammals, however, express one Dicer protein 

which seems to be only localized to the cytoplasm (Billy et al, 2001; Provost et al, 2002). 

 

Structure 

A large, multidomain protein, human Dicer (hDicer) is composed of six domains, 

including:  helicase, a domain of unknown function (DUF 283), PAZ, two RNase III 

domains, and a double-stranded RNA-binding domain (dsRBD) (Figure 1.5).  It is the 

characteristic of having two RNase III domains that classifies Dicer as an RNase III, class 

II enzyme as described by Jaskiewicz and Filipowicz (2008).  Dicer functions as a 

monomeric protein, in which the two RNase III domains form a pseudo-dimer-type 

catalytic domain, as described below (Zhang et al, 2004; MacRae et al, 2006).  

The PAZ domain, which is also found in Argonaute proteins, has been shown to 

contain an oligo-binding (OB)-like fold.  OB-folds specifically recognize dsRNA ends 

that have a 2 nt overhang on the 3’ end, as is characteristic of processing by an RNase III 

enzyme.  In this way, the miRNA processing pathway has a recognition mechanism.  

Drosha processes pri-miRNA into pre-miRNA and leaves a 2 nt 3’ overhang that will be 

recognized first by Exportin-5 for transporting the miRNA to the cytoplasm and then by 

Dicer which will further cleave the pre-miRNA (MacRae et al, 2006). 
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Figure 1.5: Structure of Giardia Dicer; box notes the two active sites 
formed between RNase IIIa domain and RNase IIIb domain (MacRae et al, 
2006). 
 

 

 The two RNase III domains are only functional when they are dimerized.  They 

fold together and two active sites are formed across the surface of the dimer, as shown in 

Figure 1.6.  These active sites cleave the RNA.  These active sites are offset from one 

another, indicating the mechanism by which this enzyme will leave a 2 nt overhang when 

the RNA is cleaved.  Interestingly, when MacRae and his colleagues measured from the 

catalytic active sites to the 3’ binding pocket in the PAZ domain, they discovered that it 

is 65 angstroms (Å), which is equivalent to about 25 nt.  Consequently, not only is Dicer 

the scissors that cleave ds-miRNA, it is the molecular ruler that determines its final 

length, as illustrated in Figure 1.7.  (MacRae et al, 2006) 
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Figure 1.6:  Cartoon depiction of the dimerized RNase III domains of 
Dicer; arrows indicate the two cleavage sites (Zhang et al, 2004). 

 

 

 

Figure 1.7: Model of Giardia Dicer bound to pre-miRNA.  Asterisk 
indicates the 3’ binding pocket of the PAZ domain; arrows indicate active 
sites at which cleavage occurs.  The distance from the 3’ binding pocket to 
the cleavage sites is measured at 65Å (MacRae et al, 2006). 
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 Because only Giardia Dicer has been crystallized, which lacks the helicase 

domain, the DUF, and the dsRBD, these three domains have yet to be characterized.  It 

has been noted, however, that though ATP stimulates the generation of siRNAs by the C. 

elegans Dicer and one of the two Drosophila Dicers, as is characteristic of an 

ATPase/helicase domain, the addition of ATP has no significant effect on the mammalian 

Dicer activity (Nyykanen et al, 2001; Ketting et al, 2001; Zhang et al, 2002; Liu et al, 

2003).   

 
 
Dicer Function:  Plants and Drosophila 

 As previously mentioned, plants express four Dicer genes.  These “Dicer like” 

(Dcl) proteins are numbered sequentially, Dcl1 – Dcl4, each having a distinct function.  

Dcl-1 processes miRNA precursors, including pri-miRNAs and pre-miRNAs (Kurihara 

and Watanabe, 2004).  Dcl-2 generates siRNAs associated with antiviral defense.  Dcl-3 

generates siRNAs involved in chromatin modification and transcriptional silencing.  Dcl-

4 is required for trans-acting siRNAs (ta-siRNAs) biogeneisis and activity (Gasciolli et 

al, 2005; Xie et al, 2005).  Because the small RNAs produced by each Dicer are involved 

in different processes, a mechanism must exist that mediates each one; Margis and 

colleagues (2006) suggest that the dsRBDs of Dicer fulfill this role. 

 Drosophila encode only two Dicer genes, Dicer-1 and Dicer-2, for which there are 

also distinct roles.  Dicer-1 is involved in processing pre-miRNA for association with 

RISC, while Dicer-2 is involved in siRNA production for the RNAi pathway (Lee et al, 

2004).   
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Protein Interaction 

 Dicer has been shown to have multiple interactions with other proteins; these 

include interactions with double-stranded (ds)-RNA binding domain (dsRBD) proteins 

and Argonaute proteins. 

 In most species examined to date, Dicer must be coupled with some sort of 

dsRBD in order to work properly.  The first dsRBD protein required for Dicer activity 

was discovered in C. elegans by Tabara and colleagues in 1999, and was identified as 

Rde-4 by a genetic screen.  Later, Grishok and colleagues (2000) showed that Rde-4 was 

required for the initiation step of RNAi in C. elegans, but is not required for miRNA 

processing.   

As previously mentioned, Drosophila have two Dicer proteins with separate 

functions; each of these Dicer proteins partners with a different dsRBD.  Dicer1 pairs 

with Loquacious (Loqs), while Dicer2 pairs with R2D2 (Satio et al, 2005; Liu et al, 

2003).  Loqs plays an important role in enhancing miRNA biogenesis, though it seems to 

unnecessary for assembly of miRNA-RISC (Liu et al, 2007).  R2D2, on the other hand, 

does not assist in the production of siRNA but does help facilitate the assembly of the 

siRNA-RISC (Liu et al, 2003).  R2D2 does this by forming a heterodimer with Dicer2 

which senses the thermodynamic stability of the 5’ ends of the siRNA; the more stable of 

the ends will bind to R2D2, while the less stable end binds Dicer.  In this way, the less 

stable 5’ end of the siRNA is incorporated into the RISC complex (Tomari et al, 2004). 

In humans, two dsRBD proteins have been identified:  TRBP (human 

immunodefinciency virus (HIV-1) transactivating-response (TAR) RNA-binding protein) 
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and PACT (PKR activator) (Haase et al, 2005; Lee et al, 2006).  TRBP is required for 

optimal RNA silencing mediated by both siRNAs and endogenous miRNAs; it has also 

been shown, in vivo, to assist Dicer in the cleavage of pre-miRNA (Haase et al, 2005).  

Before it was identified as a Dicer binding partner, TRBP had already been assigned 

several functions.  These include inhibition of protein kinase R (PKR), which is dsRNA-

regulated and interferon-induced (Daher et al, 2001), and a role in modulating HIV-1 

gene expression via TAR association (Dorin et al, 2003).  The other mammalian dsRBD, 

PACT, is 42% identical to TRBP and also interacts with Dicer.  Lee and colleagues 

(2006) isolated PACT in a complex with Dicer, TRBP, and hAgo2.  It was then 

demonstrated that depletion of this protein causes an accumulation of mature miRNA in 

human cells, but does not affect pre-miRNA processing, indicating an important role in 

RISC assembly.   

Argonaute proteins have also been shown to interact with Dicer.  Tahbaz and 

colleagues (2004) demonstrated that part of the PIWI domain of Argonaute proteins, the 

PIWI-box, directly binds to the RNase III domain of Dicer.  This interaction is dependent 

upon Hsp90 and inhibits the RNase activity of Dicer in vitro.  They also showed that the 

interactions between Argonaute proteins and Dicer may occur in multiple cellular 

compartments.   

 

Mechanisms of Dicer 

 Dicer mechanisms of pre-miRNA processing have been most extensively studied 

with human Dicer, which was over-expressed in insect cells and purified (Provost et al, 
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2002; Zhang et al, 2002).  Mg2+ was required for the RNase activity of Dicer, but not for 

dsRNA binding; cleavage did not require ATP in vitro (Provost et al, 2002; Zhang et al, 

2002).  In fact, mutation of an essential amino acid in the ATPase domain of recombinant 

human Dicer had no effect on Dicer activity (Zhang et al, 2002).  This may simply be due 

to lack of a fully functional recombinant Dicer protein.  Zhang and colleagues (2002) 

proposed that if ATP did have a role in assisting Dicer in mammalian cells, it might be 

involved in product release from Dicer, aiding the multiple turnover of the enzyme. 

 By using substrates with modified ends, Zhang and colleagues (2002) also 

showed that Dicer process dsRNA from their termini.  A few years later, they 

demonstrated that the processing of dsRNA and, specifically, that of pre-let-7 RNA 

occurs with a very low turnover rate.  This is likely because the product remains 

associated with the enzyme.  (Zhang et al, 2004) 

 Mutations in human Dicer indicated the following residues are essential for the 

cleavage activity of Dicer:  Asp1320 and Glu1652 from the RNase IIIa domain, and 

Asp1709 and Glu1813 from the RNase IIIb domain.  These cleavage sites generate 

products with 2 nt 3’ overhangs.  From these data, Zhang and colleagues (2004) proposed 

that Dicer functions via intramolecular dimerization of its two RNase III domains.  The 

RNase IIIa domain processes the protruding 3’-OH-bearing RNA strand, and the RNase 

IIIb domain processes the opposite 5’-phosphate-containing strand. 

 These researchers went on to mutate the PAZ domain of Dicer, which greatly 

reduced Dicer’s dsRNA-processing activity.  As mentioned earlier, the PAZ domain 

recognizes the 3’ overhangs of dsRNA; this is consistent with the finding that Dicer 



www.manaraa.com

 28

cleaves dsRNA and pre-miRNA substrates containing 3’ overhangs more efficiently than 

blunt ended dsRNA  (Zhang et al, 2004). 

 With this information, Zhang and colleagues (2004) proposed a model for Dicer 

processing (Figure 1.8), which was later confirmed by MacRae and others (2006) when 

they obtained the crystal structure of the full-length Dicer from G. intestinalis.  In this 

model, the 2 nt 3’ overhang on the substrate is recognized by the PAZ domain and held in 

the binding pocket of the domain; Dicer formed an internal dimer between domains 

RNase IIIa and RNase IIIb, each domain processing one strand of the dsRNA, and 

leaving another 2 nt 3’ overhang on the product. 

 
 

 

Figure 1.8:  Cartoon depiction of the dimerized RNase III domains of 
Dicer; red arrows indicate the two cleavage sites (Zhang et al, 2004). 

 

 

Involvement in RISC Formation 

 Though Dicer is essential to the processing of miRNA and siRNA, further 

research has revealed an important role for Dicer in the effector step of RNA silencing:  

the formation of the RNA-induced silencing complex (RISC).  Thus far, the majority of 

research involving these intermediate steps has been conducted in Drosophila.  Pham and 
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colleagues (2004) identified three separate intermediate complexes in Drosophila:  R1, 

R2, and R3 (Figure 1.9).  A precursor to R2 and R3, R1 is a complex of 360kDa 

consisting of Dicer2, R2D2, and possibly other unidentified proteins; its function is likely 

to process the long dsRNA and perhaps determine the guide/passenger strand asymmetry 

(Pham et al, 2004).  The R2 complex likely functions in dsRNA unwinding; this may be 

initiated by the Dicer2-R2D2 complex, but requires Ago2 to proceed (Tomari et al, 

2004).  The R3 complex, also described as “holo-RISC,” requires ATP and consists of:  

siRNAs, Dicer1, Dicer2, R2D2, Ago2, and other proteins.  Pham and colleagues (2004) 

refer to the R3 complex as the “RNAi effector complex.” 

 

 

 

Figure 1.9:  Model of RISC assembly in Drosophila (Jaronczyk et al, 2005) 
 

 

Mammalian RISC assembly is less understood.  In fact, some data indicate Dicer 

may not be required for RISC assembly in mammals.  Cells depleted of Dicer were still 

capable of siRNA-mediated RISC activity (Martinez et al, 2002).  However, multiple 

studies indicated Dicer does at least play a stimulatory role in the assembly and function 
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of RISC in that 30bp dsRNAs, which are processed by Dicer to induce RNAi, are more 

efficient at triggering an RNAi response than siRNAs (Kim et al, 2005; Rose et al, 2005; 

Siolas et al, 2005). 

 

Expression 

Many studies have been conducted to elucidate the consequences of loss of Dicer 

function using tissue-specific, conditional knockouts.  These studies have shown that 

Dicer function, and therefore miRNA function, is essential for vertebrate development 

and required for the normal function of:  T cells, B cells, chondrocytes, skin and hair 

follicles, brain, heart, skeletal muscle, lung epithelium, pancreatic islets, limb 

development, retina, spermatogenesis, spindle formation, corpus luteum angiogenesis, 

and general reproductive soundness (reviewed by Jaskiewicz and Filipowicz, 2008).   

 

Argonaute2 

Named after the squid-like phenotype of plants that lacked the functional protein 

(Bohmert et al, 1998), Argonaute proteins have been described as the “molecular 

scaffold” presenting small, guide RNA molecules of RNA silencing to their 

complementary targets (Parker and Barford, 2006).  This includes Ago proteins’ 

involvement in the RNA-induced silencing complex (RISC) as well as in the RNA-

induced initiation of transcriptional gene silencing (RITS), which is involved in the 

assembly and function of heterochromatin (Verdel et al, 2004).   
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Argonuate proteins have a molecular weight of about 100 kDa (Cerutti, et al 

2000) and have been studied in many organisms, including Trypanosoma brucei (T. 

brucei), S. Pombe, Chlamydomonas reinhardtii (C. reinhardtii), Caenorhabditis elegans 

(C. elegans), Drosophila melanogaster (D. melanogaster), and many mammals; the 

number of Argonaute genes varies across species, from one in S. pombe to 27 in C. 

elegans (Peters and Meister, 2007; Casas-Mollano et al, 2008; Shi et al, 2004).  Eight 

Argonaute protein genes have been identified in humans; they are divided into two 

subfamilies:  Ago and Piwi.  The Piwi proteins, which total four, are expressed mainly in 

the testes.  Of the Ago subfamily, there are four proteins, all of which are ubiquitously 

expressed in human tissues.  These proteins contain the same protein motifs (the PAZ 

motif in the middle and the Piwi motif in the C-terminal region), which have been 

observed in the Ago family members of many non-human species as well, suggesting 

these may be important for the proteins’ function (Sasaki et al, 2003). 

A study conducted by Meister and colleagues (2005) showed that miRNA 

associate with all of these Ago proteins (1-4), with no preference between them.  

However, only one of these four Ago proteins, Argonaute-2 (Ago2), has slicing 

capabilities to degrade the mRNA to which miRNA binds (Meister et al, 2004; Liu et al, 

2004).  Also in 2004, Rand and colleagues isolated RISC and used mass spectrometry to 

identify proteins involved in RISC and concluded that only Ago2 composes the core 

RISC nuclease activity.   
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Structure 

The crystallization of Ago2 confirmed it as the once unknown “Slicer” of 

miRNA-mediated mRNA degradation.  Ago2 is one of many PAZ-Piwi Domain (PPD) 

proteins, which all have two characteristic domains:  PAZ and Piwi (Figure 1.10).   

 

 

 

Figure 1.10:  Structure of P.furiosus Argonaute (Song et al, 2004). 
 

 

The PAZ domain (named after Piwi, Argonaute, and Zwilli) forms a module 

characteristic of nucleic-acid-binding molecules, an oligonucleotide/oligosaccharide-

binding fold (OB fold), that specifically binds the 3’ end of RNA (Figure 1.11).  In fact, 

nucleic acid binding studies have shown that PAZ has a high affinity for single-stranded 

3’ ends and double-stranded ends with 2 nt 3’ overhangs (Song el al, 2003; Lingel et al, 
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2003).  These 2 nt 3’ overhangs are characteristic of miRNA processing by the RNase III 

enzymes Drosha and Dicer.   

 

Figure 1.11:  Ribbon structure of Drosophila Ago2 PAZ domain, forming 
an RNA-binding cleft (Song et al, 2003). 

 

The crystallization of the Piwi domain immediately elucidated how Argonaute 

functions as “Slicer.”  The Piwi domain’s tertiary structure matches that of the RNase H 

enzyme family (Figure 1.12) and is characteristic of enzymes with nuclease activities, 

therefore indicating the Piwi domain of Ago as the enzyme responsible for the mRNA 

cleavage characteristic of RNAi.  In fact, in 2005, Rivas and colleagues demonstrated that 

Ago2 could recapitulate RISC activity.   

Similar to RNase H, three residues within the Piwi domain form a catalytic triad.   

The human catalytic triad for Ago2 is D(597), D(669), and H(807), as identified by 

mutation studies (Rivas et al, 2005; Song et al, 2004).  Ago2 has been identified as the 

only member of the human Ago subfamily with endonuclease activity (Liu et al, 2004; 

Meister et al, 2004).  It is interesting to note that Ago3 is catalytically inactive, even 
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though the catalytic triad DDH is conserved (reviewed by Meister and Tuschl, 2004).  

This may indicate that posttranslational modifications or interactions with specific 

proteins may modify the activity of Ago proteins. 

 
 

 

Figure 1.12:  Ribbon structure of Drosophila Ago2 Piwi domain, depicting 
an RNase H-like structure (Song et al, 2004). 

 

 

In a study of the AGO1 protein in the protozoan T. brucei, researchers uncovered 

an N-terminal domain with a high abundance of RGG repeats.  Deletion of this domain 

blocked association of AGO1 with polyribosomes and severely affected mRNA cleavage.  

However, the mutant was still able to bind with siRNA.  This N-terminal domain may be 

important for post-translational modifications in the RGG-rich sequences that are critical 

to the proper function of the protein.  (Shi et al, 2004) 

Another functionally important domain was discovered through x-ray 

crystallography of bacterial Argonaute proteins, located between the PAZ and PIWI 
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domain, and therefore dubbed the “MID domain” (Parker et al, 2005; Yuan et al, 2005).  

This MID domain [though one review by Parker and Barford (2006) refer to it as part of 

the PIWI domain] is the most conserved region in Argonaute.  The region contains a 

highly basic pocket that binds the 5’ phosphorylated nucleotide of the guide RNA strand.  

This 5’ phosphate group is characteristic of mature miRNAs processed by Dicer.  Rivas 

and colleagues showed that this 5’ phosphate group is required for stability when in 

complex with hAgo2 and ensures “slicing fidelity” (2005).  Interestingly, there are only 

nine conserved residues in the PIWI domain across divergent Argonaute sequences, four 

of which contact the 5’ phosphate group of the guide strand (Parker and Barford, 2006).  

This highlights the importance of the binding pocket in this region. As illustrated in 

Figure 1.13, Argonaute proteins’ PAZ domain binds the miRNA; at which point the 

miRNA binds its target, the Piwi domain of Argonaute cleaves the target message (Song 

et al, 2003; Song et al, 2004; Lingel and Izaurralde, 2004). 

Thus far, members of the mammalian subfamily Piwi have yet to be analyzed for 

Slicer activity, although Drosophilia PIWI shows Slicer activity in vitro even though the 

catalytic triad is formed by DDK (Saito et al, 2006). 
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Figure 1.13:  Cartoon depiction of the mechanism of Ago2.  The PAZ 
domain binds the 3’ end of the miRNA which binds its target mRNA and 
the Piwi domain cleaves the target message (Song et al, 2004). 

 

 

Mechanisms of Argonaute: RISC  

 As reviewed above, Dicer processes miRNA precursors into approximately 21 nt 

long ds-miRNAs.  Of this ds-miRNA, one strand is the referred to as the guide strand and 

will be loaded into the Ago protein; the other strand is the passenger strand and is 

discarded.  Though it was thought that a helicase may assist with the unwinding process, 

Matranga and colleagues demonstrated that siRNAs are loaded into the Ago2 protein 

prior to release of the passenger strand after which Ago2 cleaves the passenger strand, 

facilitating its displacement.  (Matranga et al, 2005) 

It has been noted that for most miRNAs, only one strand from the ds-miRNA 

accumulates as the mature miRNA.  This asymmetric loading is guided by the relative 
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thermodynamic stability of the 5’ ends of the ds-miRNA.  The less stably paired of the 5’ 

ends in the ds-miRNA is the one preferentially incorporated into the Ago complex 

(Khvorova et al, 2003; Schwarz et al, 2003). 

In Drosophila, R2D2 (the dsRNA binding domain (dsRBD) protein) forms a 

heterodimer with Dicer2 and binds the more stable end of the siRNA, thereby positioning 

the duplex to allow incorporation of the correct strand, as illustrated in Figure 1.14 

(Tomari et al, 2004). 

The human dsRBD proteins, as reviewed above, include TRBP and PACT.  These 

reside independently in a complex with Ago2 and Dicer which is able to generate 

miRNAs from dsRNA precursors, transfer one strand to Ago2, and cleave 

complementary substrate RNAs.  Inactivation of TRBP and PACT results in a loss of 

mature miRNAs, insinuating their roles in strand selection or Ago loading.   
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Figure 1.14:  RISC assembly model for Drosophila (Matranga et al, 2005). 

 
 

Argonaute proteins that lack slicing capabilities can still function in RNA 

silencing.  If the miRNA guide-strand contains multiple mismatches to its target, the 

targeted mRNA is silenced, not sliced (Matranga et al, 2005).  Parker and Barford 

propose that these Argonaute proteins may be involved in pathways that expose them to 

“mismatched precursors,” such as miRNAs that would not fully compliment their target 

mRNA.  These proteins include hAgo4 and Hiwi2.   
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The next step, after miRNA guide strand loading, is target recognition.  Many 

studies have shown that all nucleotides in the miRNA sequence are not created equal.  It 

appears that nucleotides 2 – 7 or 8 of the miRNA, as measured from the 5’ end, compose 

the “seed” sequence.  This seed sequence mediates the interaction with the target mRNA 

sequence (Lewis et al, 2003; Doench and Sharp, 2004; Lewis et al, 2005; Birmingham et 

al, 2006).  It is thought that once the target strand binds the guide miRNA, the rest of the 

duplex continues to form onward toward the 3’ end of the guide strand.  Some studies 

indicate this may be coupled to a conformational change in Argonaute, in which the PAZ 

lobe of the protein retracts to make room for the duplex and position it in the active 

“Slicer” site of the PIWI domain, which lies under the PAZ lobe (Yuan et al, 2005). 

Once the guide strand is bound to its target mRNA, the message then may be 

sliced or not (Figure 1.15).  Whether or not the message is sliced is two-fold.  Firstly, and 

simply, the bound Argonaute protein may not have an active catalytic triad, as discussed 

previously.  Secondly, the guide strand may contain mismatches to its target sequence.  

Studies have shown that complementarity of the guide strand to its target is necessary for 

slicing, likely due to a necessary substrate geometry required in the active site that 

mismatches would disrupt (Haley and Zamore, 2004; Chiu and Rana, 2002; Hutvagner 

and Zamore, 2002). 
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Figure 1.15:  miRNA target recognition (Wienholds and Plasterk, 2005). 
 
 

In studies of human RISCs containing human Argonaute1-4 (hAgo1-4), only 

hAgo2-RISC had any cleavage activity, even though, as previously mentioned, hAgo3 

possesses a full catalytic triad and hAgo1 a partial triad (Meister et al, 2004; Liu et al, 

2004).  As noted by Parker and Barford (2006), these experiments may indicate the 

existence of other unidentified factors involved in slicing activity. 

RISC has been shown to be a multiple-turnover enzyme, as indicated in a study 

by Hutvagner and Zamore in 2002.  In another study, by Haley and Zamore (2004), the 

rate of multiple-turnover activity was increased by mismatches in the guide strand 

complementarity; the turnover rate was also increased with addition of ATP.  The 

structure of the Ago protein in conducive to retaining the guide strand:  containing a 3’ 

binding pocket in the PAZ domain and a 5’ binding pocket in the PIWI domain.  

 

P-Bodies and Stress Granules 

Localization studies have revealed that Ago proteins are enriched in distinct 

cytoplasmic foci, determined by colocalization studies to be P-bodies (Liu et al, 2005b; 
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Sen and Blau, 2005).  P bodies are cellular sites where mRNA de-capping and 

degradation enzymes localize to ensure rapid and efficient mRNA turnover occurs 

(reviewed by Eulalio et al, 2007). 

Depletion of P-body components, such as TNRC6A, TNRC6B, MOV-10, and 

Dcp1/2, inhibited miRNA-guided RISC activity (Jakymiw et al, 2005; Liu et al, 2005a; 

Meister et al, 2005; Rehwinkel et al, 2005).  Mutated Ago proteins incapable of binding 

miRNA do not localize to P-bodies, suggesting that Ago proteins must first be 

incorporated into mRNA protein complexes (mRNPs) via miRNA-mRNA interactions in 

order to localize to P bodies.   

Interestingly, there is a model for mRNA storage, implying that mRNA can re-

localize to the cytoplasm and re-enter polyribosomes for translation.  In fact, 

Bhattacharyya and colleagues (2006) showed that the CAT-1 mRNA, which is repressed 

by the liver-specific miR-122 and stored in P-bodies under normal conditions, is released 

upon cellular stress and is actively translated to produce CAT-1 protein (which is 

required for cellular stress response).  Specifically, the mRNA is released from Ago by 

the RNA binding protein HuR, which is localized to the nucleus under normal conditions 

but is released into the cytoplasm during cellular stress.  Here is an experimentally 

proven example that mRNA can be stored and released for future use.   

In has been shown that Ago proteins do not only localize to P-bodies, however, 

but also to the diffuse cytoplasm and stress granules (SGs) (Leung et al, 2006).  In fact, 

EGFP tagging of Ago2 revealed that only about 1.3% of EGFP-Ago2 localizes to P 

bodies, and further analysis revealed that the P-body pool of Ago proteins seemed to be 
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static whereas the SG-localized Ago proteins demonstrated more dynamic behavior.  

However, much is yet to be understood about the localization differences of Ago to SG or 

P-bodies. 

 

Transcriptional Silencing   

Although immunofluorescence experiments have been unable to locate Ago 

proteins in the nucleus, researchers suggest that it is becoming apparent that Ago proteins 

do indeed function in the nucleus.  Nuclear functions for Ago proteins have been reported 

in many organisms including:  S. pombe, plants, fungi, Drosophila, and C. elegans 

(reviewed by Matzke and Birchler, 2005).   In mammals, the nuclear function of Ago has 

been a bit more elusive; however, a study by Janowski and colleagues in 2006 indicated 

that both Ago1 and Ago2 proteins associate with the progesterone receptor promoter.  

Also, with the depletion of human Ago1 and Ago2, no transcriptional silencing was 

observed, suggesting that Ago1 and Ago2 may be involved in transcriptional gene 

silencing as well as posttranscriptional gene silencing. 

 

Piwi Subfamily and piRNAs 

The human Piwi subfamily of Argonaute proteins was originally named after the 

Drosophila Piwi gene and includes:  HIWI, HIWI2, HIWI3, and HILI.  These proteins 

have been implicated in germ cell development, stem cell self-renewal, and 

retrotransposon silencing (Cox et al, 2000; Kalmykova et al, 2005).  Members of the 

Piwi subfamily have been identified in many organisms, many of which seem to be germ-
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cell specific (indicating functional conservation).  Given all that has been uncovered 

about the Ago subfamily, however, the Piwi subfamily functions and properties have 

been less widely researched.    

In the mouse, MILI and MIWI were shown to be essential for spermatogenesis 

(Deng and Lin, 2002; Kuramochi-Miyagawa et al, 2004).  Interestingly, female mili 

knockout mice showed no abnormalities, while male mili knockouts had smaller testes 

and were sterile (Kuramochi-Miyagawa et al, 2004).  Similar results were seen with miwi 

knockout mice, with the difference being that defects were seen at later stages of 

spermatogenesis (Deng and Lin, 2002).   

A novel class of small RNA has been identified that interact specifically with 

members of the Piwi subfamily, and therefore have been dubbed piRNA.  MIWI-

associated piRNA are 29-31 nt, while MILI-associated piRNA are 26-28 nt.  Many 

piRNA are not conserved from mouse to human on the sequence level.  (Aravin et al, 

2006; Girard et al, 2006; Grivna et al, 2006; Watanabe et al, 2006).  The timing of 

piRNA expression and the phenotypes of Piwi knockouts indicate their role in sperm 

development.  Also, piRNA seem to be abundantly expressed.  According to Aravin and 

colleagues (2006), there are about 8000 copies of an individual piRNA and 1 million total 

piRNA per mouse spermatocyte.  The function of piRNA, however, and whether or not 

they function similarly to siRNA or miRNA is yet unclear.   
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Expression 

Liu and others published a study in Science in 2004 in which they disrupted the 

Ago2 gene in mice.  Intercrosses of Ago2 heterozygotes produced only wildtype and 

heterozygous offspring, implicating that the disruption of Ago2 was embryonic lethal.  

Ago2-deficient embryo phenotypes included:  defects in neural tubes, cardiac failure, and 

yolk sac and placental defects.  They also used mouse embryo fibroblasts (MEFs) from 

embryos from Ago2 heterozygous intercrosses to explore whether embryos lacking Ago2 

were resistant to experimental RNAi, using siRNA.  These cells were unable to repress 

gene expression in response to siRNA, but were rescued by addition of a plasmid 

encoding for human Ago2.  This indicates an important role for Ago2, and therefore 

miRNA function, in embryonic development (Liu et al, 2004). 

 

Implications  

Given the obvious importance of Dicer and Ago2 during embryonic development 

and the important role of each in the synthesis and function of miRNA, it can be 

concluded that miRNA is essential for proper embryonic development.  Therefore, 

aberrant miRNA expression could be involved in impaired embryonic development.  

However, no information is currently available regarding the expression of Dicer and 

Ago2 in pigs.  It is our goal to identify Dicer and Ago2 expression in porcine 

reproductive tissue and obtain their full length coding sequences.   



www.manaraa.com

 45

CHAPTER TWO 

CLONING AND EXPRESSION OF PORCINE DICER 

 

Introduction 

 Recently, a class of small non-coding RNA called microRNA (miRNA) has been 

described and reported to have roles in normal mammalian embryonic development.  

These miRNAs are encoded in the genome, transcribed by RNA polymerase II and 

processed into fragments ~22 nt in length by Ribonuclease enzymes, the final one being a 

protein called Dicer.  Dicer was first identified by Bernstein and colleagues in 2001 as the 

enzyme which produces the approximately 21 nt miRNA.  Dicer is an RNase III enzyme, 

a class of enzymes that show specificity for dsRNA, and has been shown to process pre-

miRNA from its 76 nt hairpin structure into mature ds-miRNA.  Dicer is essential for 

miRNA production and Dicer knockouts have been shown to be embryonic lethal 

(Bernstein et al, 2001; Bernstein et al, 2003).   

Our objective is to understand the miRNA pathway in pigs, including: identifying 

miRNA expressed in reproductive tissues, describing the ontogeny of this pathway, and 

identifying in this species the major proteins involved in the synthesis and function of 

miRNA.  Dicer has yet to be identified in pigs.  The objective of this study was to clone 

the cDNA for porcine Dicer (pDicer), as well as verify its expression in multiple 

reproductive tissues including oocytes and developing embryos.  We hypothesize that the 

Dicer sequence is highly conserved in pigs and that its message is expressed in porcine 

embryos during the time of fetal genome activation. 
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Materials and Methods 

RNA Isolation 

Porcine ovaries were obtained from nearby abattoirs, frozen in liquid nitrogen, 

and stored at -80° C until further processed.  Sections weighing approximately 200 mg 

were obtained from the frozen ovaries and used for total cellular RNA (tcRNA) isolation 

using the mirVana miRNA isolation kit (Ambion, Austin, TX). 

 

RT-PCR/Primer Design 

tcRNA was subjected to endpoint RT-PCR using SuperScript™ III First-Strand 

Synthesis Super Mix for reverse transcription (Invitrogen, Carlsbad, CA).  The first 

strand reaction was utilized for PCR with GoTaq (Promega, Madison, WI).  All PCR 

reactions were run with a total volume of 25 µl in an Eppendorf Mastercycler gradient 

thermocycler (Westbury, NY) according to the following program:  Lid: 95.0°; (1) 

T=95.0°, 3:00min; (2) T=94.0°, 0:30min; (3) T=(annealing temperature specific to primer 

set), 0:30min; (4) T=72.0°, 0:30min; (5) GOTO 2 Rep 34; (6) T= 72.0°, 3:00min; (7) 

HOLD 4.0°.   Specific annealing temperatures were obtained by running gradient 

programs for each primer set.  PCR products were subjected to non-denaturing slab gel 

electrophoresis, using 1.2 to 2.0% TAE or TBE gels, and visualized using Ethidium 

Bromide (EtBr) staining and UV-light exposure. 

To generate PCR primers, the cDNA sequences for bovine Dicer (bDicer), human 

Dicer (hDicer) and mouse Dicer (mDicer) (accession numbers AY386968, NM030621, 

and NM148948, respectively) were aligned.  Primers were generated from highly 
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conserved regions by using Vector NTI (Invitrogen, Carlsbad, CA) or were designed by 

hand following Rybicki’s guidelines in Molecular Biology Techniques Manual (2001).  

Eight primer sets were designed for eight overlapping fragments of the Dicer coding 

sequence, as illustrated in Figure 2.1.  Primer sequences are listed in Table 2.1.  

 

 

 

Figure 2.1:  Dicer cloning strategy using RT-PCR.  Based on bovine 
Dicer cDNA sequence (approximately 5796bp, accession: AY386968).  
Fragment sizes for each primer set shown. 
 
 
 
 

Table 2.1:  Primer sequences for pDicer fragments. 

Fragment Forward Reverse 
Ia 5’-TTGAAACACTGGATGAATGA 5’-TTCTAGGTTTGAGTATTCCC 

I 5'-CATGACCCCTGCTTCCTCA 5'-GGGGTGGTCTAGGATTGCAAG 

II 5’-GACGGTGTTCTTGTCAACTC 5’-GCTGATGTAAGCCAGCTCTG 

III 5'-AGCGGCAGCAGTTYGAAAGY 5'-TCAGGCAACTCTCGGGTTCT 

IVa 5’-ACAAAGCTATTGAAAAGATCTTGCG 5’-AAACGGCTTTTCTCCACAGT 

IVb 5’-CCCAAGCCCAGCGATGAATG 5’-AGAAGGTAAGCCTTATTCTT 

IVc 5’-CCAGCATCACTGTGGAGAAA 5’-GTTAGCATTTCCATCAAGGT 

V 5'-TCAACTACCAGATTCAAGAATA 5'-GCAGAAGTGAGGAAAGAAGA 
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Subcloning/Sequencing 

PCR products for each fragment were ligated into the pDrive Cloning Vector and 

transformed into competent E.coli cells using Qiagen PCR Cloning Kit (Qiagen, 

Valencia, CA).  Transformed cells were plated onto agar plates which had been treated 

with 100 mg/mL ampicillin; prior to plating cells, all plates were coated with 75-100 µl 

IPTG (isopropyl-beta-D-thiogalactopyranoside) and 75-100 µl X-gal (5-bromo-4-chloro-

3-indolyl-beta-D-galacto-pyranoside) for blue-white screening.  Plates were incubated at 

37° C overnight.  Subsequent colonies were selected, streaked onto new agar/+amp 

plates, and grown in LB media at 37° C overnight.  Plasmids were isolated from cultures 

using Qiagen QIAprep Spin Miniprep Kit (Qiagen, Valencia, CA).  Isolated plasmids 

were digested with EcoR1 at 37° C, to confirm insertion of the gene of interest, and sent 

to Clemson University Genomics Institute (CUGI, Clemson, SC) for sequencing.  

Forward and reverse reactions using M13 primers were used for sequencing.  Four clones 

were sequenced for each fragment to rule out possible GoTaq reading errors.   

Sequences were analyzed in Vector NTI (Invitrogen) and aligned to bovine, 

human, and mouse sequences for which percent sequence identities were obtained. 

 

Embryo Collection 

Gilts were obtained from and housed individually at Starkey Swine Center, 

Clemson University.  Estrus detection began twice daily when the average gilt weight 

was approximately 118 kg.  Gilts were artificially inseminated at standing estrus and 12 

hours post-standing estrus using Duroc semen obtained from Swine Genetics 
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International (Cambridge, Iowa).  Inseminated gilts were slaughtered 3, 5, or 7 days post-

insemination.  Reproductive tracts were collected at the time of slaughter and 

immediately flushed to retrieve embryos.  Tracts were flushed with approximately 100 

mL solution of sterile PBS and BSA (4g/L), which was subsequently filtered to collect 

the embryos.  Embryos were stored in RNAlater (Ambion, Austin, TX), snap-frozen in 

liquid nitrogen, and stored at -80° C until RNA Isolation. 

 

Results 

The nucleotide sequence obtained for porcine Dicer using our overlapping PCR 

strategy is 5,995 bp, with the coding sequence beginning at bp 17 and ending at bp 5762 

(Table 2.2).  Porcine Dicer has a sequence identity of 91% to bovine, 90% to human, and 

86% to mouse Dicer sequences (Table 2.3) at the nucleotide level.  The protein 

translation of porcine Dicer is 1,916 aa long (Tables 2.4 and 2.6), and has a sequence 

identity of 94% to bovine, 94% to human, and 92% to mouse. 

Figure 2.2 illustrates the correct size product for each fragment:  approximately 

400 bp for Fragment Ia; 508 bp for Fragment I; 1,140 bp for Fragment II; 808 bp for 

Fragment III; 1,422 bp for Fragment IVa; 615 bp for Fragment IVc; 1,343 bp for 

Fragment IVb; and 984 bp for Fragment V. 
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Figure 2.2:  Plasmid digest of cloned Dicer fragments. 

 

Table 2.2:  Nucleotide sequence for pDicer with amino acid translation. 
 

     1 - TTGAAACACTGGAUGAATGAAAAGCCCTGCTTTGCAACCCCTCAG  - 45  
     1 -                 M  K  S  P  A  L  Q  P  L  S   - 10  
 
    46 - CATGGCAGGCCTGCAGCTCATGACCCCTGCTTCCTCACCAATGGG  - 90  
    11 -  M  A  G  L  Q  L  M  T  P  A  S  S  P  M  G   - 25  
 
    91 - TCCTTTCTTTGGACTGCCATGGCAACAAGAAGCAATTCATGATAA  - 135  
    26 -  P  F  F  G  L  P  W  Q  Q  E  A  I  H  D  N   - 40  
 
   136 - CATTTATACGCCAAGAAAATATCAGGTTGAACTGCTTGAAGCAGC  - 180  
    41 -  I  Y  T  P  R  K  Y  Q  V  E  L  L  E  A  A   - 55  
 
   181 - TCTGGATCATAATACCATAGTCTGTTTAAACACTGGCTCAGGGAA  - 225  
    56 -  L  D  H  N  T  I  V  C  L  N  T  G  S  G  K   - 70  
 
   226 - GACGTTTATTGCAGTACTACTCACTAAAGAGCTGTCCTATCAGAT  - 270  
    71 -  T  F  I  A  V  L  L  T  K  E  L  S  Y  Q  I   - 85  
 
   271 - CAGGGGAGACTTCAACAGAAATGGCAAAAGGACGGTGTTCTTGGT  - 315  
    86 -  R  G  D  F  N  R  N  G  K  R  T  V  F  L  V   - 100  
 
   316 - CAACTCTGCAAACCAGGTTGCTCAACAAGTGTCAGCTGTTAGGAC  - 360  
   101 -  N  S  A  N  Q  V  A  Q  Q  V  S  A  V  R  T   - 115  
 
   361 - TCACTCGGATCTCAAGGTTGGGGAATACTCGAACCTAGAAGTAAA  - 405  
   116 -  H  S  D  L  K  V  G  E  Y  S  N  L  E  V  N   - 130  
 
   406 - TGCATCTTGGACAAAAGAGAAATGGAACCAAGAGTTTACTAAGCA  - 450  
   131 -  A  S  W  T  K  E  K  W  N  Q  E  F  T  K  H   - 145  
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   451 - CCAGGTTCTTGTTATGACTTGCTCTGTCGCCTTGAATGTTTTGAA  - 495  
   146 -  Q  V  L  V  M  T  C  S  V  A  L  N  V  L  K   - 160  
 
   496 - AAATGGTTACTTAGCACTGTCAGACATTAACCTTTTGGTGTTCGA  - 540  
   161 -  N  G  Y  L  A  L  S  D  I  N  L  L  V  F  D   - 175  
   
   541 - TGAGTGTCATCTTGCAATCCTAGATCACCCCTACCGAGAGATTAT  - 585  
   176 -  E  C  H  L  A  I  L  D  H  P  Y  R  E  I  M   - 190  
 
   586 - GAAGCTCTGTGAAAATTGTCCATCATGTCCTCGTATTTTGGGGCT  - 630  
   191 -  K  L  C  E  N  C  P  S  C  P  R  I  L  G  L   - 205  
 
   631 - AACTGCTTCCATTTTAAATGGGAAATGTGATCCAGAGGAATTGGA  - 675  
   206 -  T  A  S  I  L  N  G  K  C  D  P  E  E  L  E   - 220  
 
   676 - AGAAAAGATACAGAAACTGGAGAAAATTCTTAAGAGTAATGCTGA  - 720  
   221 -  E  K  I  Q  K  L  E  K  I  L  K  S  N  A  E   - 235  
 
   721 - AACTGCAACTGACTTGGTGGTCTTAGACAGATATACTTCTCAGCC  - 765  
   236 -  T  A  T  D  L  V  V  L  D  R  Y  T  S  Q  P   - 250  
 
   766 - ATGTGAGATTGTGGTAGACTGTGGACCATTTACTGACAGAAGTGG  - 810  
   251 -  C  E  I  V  V  D  C  G  P  F  T  D  R  S  G   - 265  
 
   811 - GCTTTATGAAAGACTGCTGATGGAATTAGAAGAAGCTCTCAATTT  - 855  
   266 -  L  Y  E  R  L  L  M  E  L  E  E  A  L  N  F   - 280  
 
   856 - TATCAATGACTGTAACATAGCTGTACATTCAAAAGAAAGAGATTC  - 900  
   281 -  I  N  D  C  N  I  A  V  H  S  K  E  R  D  S   - 295  
 
   901 - TACTTTAATTTCCAAACAGATACTGTCAGACTGTCGTGCAGTATT  - 945  
   296 -  T  L  I  S  K  Q  I  L  S  D  C  R  A  V  L   - 310  
 
   946 - GGTAGTTCTGGGACCTTGGTGTGCAGATAAAGTAGCTGGAATGAT  - 990  
   311 -  V  V  L  G  P  W  C  A  D  K  V  A  G  M  M   - 325  
 
   991 - GGTAAGAGAACTACAGAAATATATCAAACATGAACAAGAGGAGCT  - 1035 
   326 -  V  R  E  L  Q  K  Y  I  K  H  E  Q  E  E  L   - 340  
 
  1036 - GCACAGGAAATTTCTATTGTTTACAGACACTTTCCTGAGGAAAGT  - 1080 
   341 -  H  R  K  F  L  L  F  T  D  T  F  L  R  K  V   - 355  
 
  1081 - ACACGCGCTGTGTGAAGGGCACTTCTCCCCTGCCGCGCTTGACCT  - 1125 
   356 -  H  A  L  C  E  G  H  F  S  P  A  A  L  D  L   - 370  
 
  1126 - GAGATTTGTGACTCCTAAAGTCATAAAACTGCTCGAAATCTTACG  - 1170 
   371 -  R  F  V  T  P  K  V  I  K  L  L  E  I  L  R   - 385  
   
  1171 - CAAGTACAAACCCTACGAGCGACAGCAGTTTGAAAGCGTTGAGTG  - 1215 
   386 -  K  Y  K  P  Y  E  R  Q  Q  F  E  S  V  E  W   - 400  
 
  1216 - GTATAATAATAGGAATCAGGATAATTACGTGTCTTGGAGTGATTC  - 1260 
   401 -  Y  N  N  R  N  Q  D  N  Y  V  S  W  S  D  S   - 415  
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  1261 - GGAGGATGATGAGGAGGACGAAGAAATTGAAGAAAAAGAAAAGCC  - 1305 
   416 -  E  D  D  E  E  D  E  E  I  E  E  K  E  K  P   - 430  
 
  1306 - GGAGACGAATTTTCCTTCTCCATTTACCAATATTTTATGTGGAAT  - 1350 
   431 -  E  T  N  F  P  S  P  F  T  N  I  L  C  G  I   - 445  
   
  1351 - TATTTTTGTGGAAAGAAGATACACGGCAGTTGTCTTAAACAGATT  - 1395 
   446 -  I  F  V  E  R  R  Y  T  A  V  V  L  N  R  L   - 460  
 
  1396 - GATAAAGGAAGCTGGCAAACAAGATCCAGAGCTGGCTTACATCAG  - 1440 
   461 -  I  K  E  A  G  K  Q  D  P  E  L  A  Y  I  S   - 475  
 
  1441 - CAGCAGCAATTTTATAACTGGACATGGCATTGGAAAGAATCAGCC  - 1485 
   476 -  S  S  N  F  I  T  G  H  G  I  G  K  N  Q  P   - 490  
 
  1486 - TCGTAACAAACAGATGGAAGCAGAATTCAGAAAACAGGAAGAGGT  - 1530 
   491 -  R  N  K  Q  M  E  A  E  F  R  K  Q  E  E  V   - 505  
 
  1531 - ACTTAGGAAATTTCGAGCTCACGAAACCAACCTGCTGATTGCCAC  - 1575 
   506 -  L  R  K  F  R  A  H  E  T  N  L  L  I  A  T   - 520  
 
  1576 - GAGCATTGTGGAAGAGGGTGTTGATATACCAAAKTGCAACCTGGT  - 1620 
   521 -  S  I  V  E  E  G  V  D  I  P  X  C  N  L  V   - 535  
 
  1621 - GGTTCGTTTCGATCTGCCCACAGAGTATCGATCCTACGTTCAGTC  - 1665 
   536 -  V  R  F  D  L  P  T  E  Y  R  S  Y  V  Q  S   - 550  
 
  1666 - TAAGGGAAGAGCAAGGGCGCCAATCTCTAATTACGTCATGTTAGC  - 1710 
   551 -  K  G  R  A  R  A  P  I  S  N  Y  V  M  L  A   - 565  
 
  1711 - AGATACGGACAAAATAAAGAGTTTTGAAGAAGACCTTAAAACATA  - 1755 
   566 -  D  T  D  K  I  K  S  F  E  E  D  L  K  T  Y   - 580  
 
  1756 - CAAAGCTATTGAAAAGATCTTGAGAAACAAATGCTCCAAGTCCGT  - 1800 
   581 -  K  A  I  E  K  I  L  R  N  K  C  S  K  S  V   - 595  
 
  1801 - TGAGAGTGGGGAGACCGACCTTGAGCCCGTGGTGGATGACGACGA  - 1845 
   596 -  E  S  G  E  T  D  L  E  P  V  V  D  D  D  D   - 610  
  
  1846 - CATCTTCCCCCCCTACGTGCTGCGGCCCGACGATGGCGGTCCCCG  - 1890 
   611 -  I  F  P  P  Y  V  L  R  P  D  D  G  G  P  R   - 625  
 
  1891 - GGTCACCATCAACACGGCCATTGGACACATCAACAGATACTGTGC  - 1935 
   626 -  V  T  I  N  T  A  I  G  H  I  N  R  Y  C  A   - 640  
 
  1936 - TAGATTACCCAGTGACCCGTTTACTCATCTGGCTCCTAAGTGTAG  - 1980 
   641 -  R  L  P  S  D  P  F  T  H  L  A  P  K  C  R   - 655  
 
  1981 - AACCCGAGAGTTGCCTGATGGTACATTTTATTCAACTCTTTATCT  - 2025 
   656 -  T  R  E  L  P  D  G  T  F  Y  S  T  L  Y  L   - 670  
 
  2026 - GCCAATTAATTCACCTCTTCGAGCCTCCATTGTTGGCCCCCCAAT  - 2070 
   671 -  P  I  N  S  P  L  R  A  S  I  V  G  P  P  M   - 685  
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  2071 - GAGCTGTATACGATTGGCTGAAAGAGTCGTGGCTCTCATTTGCTG  - 2115 
   686 -  S  C  I  R  L  A  E  R  V  V  A  L  I  C  C   - 700  
   
  2116 - TGAAAAACTGCACAAAATTGGTGAACTGGATGACCATTTGATGCC  - 2160 
   701 -  E  K  L  H  K  I  G  E  L  D  D  H  L  M  P   - 715  
   
  2161 - GGTTGGGAAAGAGACGGTTAAATACGAAGAGGAGCTTGATTTACA  - 2205 
   716 -  V  G  K  E  T  V  K  Y  E  E  E  L  D  L  H   - 730  
 
  2206 - TGATGAGGAGGAGACCAGTGTTCCAGGAAGACCAGGCTCCACAAA  - 2250 
   731 -  D  E  E  E  T  S  V  P  G  R  P  G  S  T  K   - 745  
 
  2251 - ACGAAGACAGTGCTACCCAAAAGCGATTCCAGAATGTTTGCGGGA  - 2295 
   746 -  R  R  Q  C  Y  P  K  A  I  P  E  C  L  R  D   - 760  
 
  2296 - CAGCTACCCCAAGCCCGATCAGCCCTGTTACCTGTATGTGATAGG  - 2340 
   761 -  S  Y  P  K  P  D  Q  P  C  Y  L  Y  V  I  G   - 775  
 
  2341 - GATGGTTCTGACAACACCTCTCCCCGATGAACTCAACTTTAGAAG  - 2385 
   776 -  M  V  L  T  T  P  L  P  D  E  L  N  F  R  R   - 790  
 
  2386 - GCGGAAGCTCTATCCCCCCGAGGACACCACAAGATGCTTCGGAAT  - 2430 
   791 -  R  K  L  Y  P  P  E  D  T  T  R  C  F  G  I   - 805  
 
  2431 - ACTGACAGCCAAACCCATACCTCAGATTCCTCACTTTCCTGTGTA  - 2475 
   806 -  L  T  A  K  P  I  P  Q  I  P  H  F  P  V  Y   - 820  
 
  2476 - CACACGCTCTGGAGAGGTCACCATTTCCATTGAGTTGAAGAAGTC  - 2520 
   821 -  T  R  S  G  E  V  T  I  S  I  E  L  K  K  S   - 835  
 
  2521 - TGGTTTCACGCTGTCTCTGCAAATGCTTGAGCTGATTACAAGACT  - 2565 
   836 -  G  F  T  L  S  L  Q  M  L  E  L  I  T  R  L   - 850  
 
  2566 - TCACCAGTATATATTTTCACATATTCTTCGGCTTGAGAAACCTGC  - 2610 
   851 -  H  Q  Y  I  F  S  H  I  L  R  L  E  K  P  A   - 865  
 
  2611 - ACTAGAGTTTAAACCCACCGACGCTGACTCAGCATACTGTGTTCT  - 2655 
   866 -  L  E  F  K  P  T  D  A  D  S  A  Y  C  V  L   - 880  
 
  2656 - ACCTCTTAATGTCGTTAATGACTCCAGCACTTTGGACATTGACTT  - 2700 
   881 -  P  L  N  V  V  N  D  S  S  T  L  D  I  D  F   - 895  
 
  2701 - TAAATTCATGGAAGACATCGAGAAATCAGAAGCTCGCATAGGCAT  - 2745 
   896 -  K  F  M  E  D  I  E  K  S  E  A  R  I  G  I   - 910  
 
  2746 - TCCCAGTACAAAGTATTCAAAAGAAACACCTTTTGTTTTTAAATT  - 2790 
   911 -  P  S  T  K  Y  S  K  E  T  P  F  V  F  K  L   - 925  
 
  2791 - AGAAGATTACCAAGATGCAGTTATCATTCCAAGGTATCGCAATTT  - 2835 
   926 -  E  D  Y  Q  D  A  V  I  I  P  R  Y  R  N  F   - 940  
 
  2836 - TGATCAGCCTCATCGATTTTACGTAGCTGATGTGTACACTGATCT  - 2880 
   941 -  D  Q  P  H  R  F  Y  V  A  D  V  Y  T  D  L   - 955  
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  2881 - TACCCCACTGAGTAAATTTCCTTCCCCTGAGTATGAAACTTTTGC  - 2925 
   956 -  T  P  L  S  K  F  P  S  P  E  Y  E  T  F  A   - 970  
 
  2926 - AGAATATTATAAAACGAAGTATAACCTTGACCTGACCAATCTCAA  - 2970 
   971 -  E  Y  Y  K  T  K  Y  N  L  D  L  T  N  L  N   - 985  
   
  2971 - CCAGCCGCTGCTGGATGTGGACCACACATCGTCAAGACTTAATCT  - 3015 
   986 -  Q  P  L  L  D  V  D  H  T  S  S  R  L  N  L   - 1000 
 
  3016 - TTTGACACCTCGCCATTTGAATCAGAAGGGGAAAGCTCTTCCTCT  - 3060 
  1001 -  L  T  P  R  H  L  N  Q  K  G  K  A  L  P  L   - 1015 
 
  3061 - GAGCAGCGCTGAAAAGAGGAAAGCCAAATGGGAGAGTCTGCAGAA  - 3105 
  1016 -  S  S  A  E  K  R  K  A  K  W  E  S  L  Q  N   - 1030 
 
  3106 - CAAACAGATCCTGGTTCCGGAACTCTGTGCTATCCATCCAATTCC  - 3150 
  1031 -  K  Q  I  L  V  P  E  L  C  A  I  H  P  I  P   - 1045 
 
  3151 - AGCATCACTGTGGAGAAAAGCAGTCTGTCTCCCCAGCATCCTTTA  - 3195 
  1046 -  A  S  L  W  R  K  A  V  C  L  P  S  I  L  Y   - 1060 
 
  3196 - TCGCCTTCACTGCCTTCTGACCGCGGAGGAGCTAAGAGCCCAGAC  - 3240 
  1061 -  R  L  H  C  L  L  T  A  E  E  L  R  A  Q  T   - 1075 
 
  3241 - GGCCAGCGATGCTGGTGTGGGAGTCAGATCACTTCCCGTGGATTT  - 3285 
  1076 -  A  S  D  A  G  V  G  V  R  S  L  P  V  D  F   - 1090 
 
  3286 - TAGATACCCCAACTTAGACTTCGGGTGGAAAAAATCCATCGACAG  - 3330 
  1091 -  R  Y  P  N  L  D  F  G  W  K  K  S  I  D  S   - 1105 
 
  3331 - CAAATCTTTCATCTCAGTTGCTAACTCCTCTTCAGCTGAAAACGA  - 3375 
  1106 -  K  S  F  I  S  V  A  N  S  S  S  A  E  N  E   - 1120 
 
  3376 - GAACTACTGTAAGCACAGCCCCCTCGTCCCTGAACATGCTGCACA  - 3420 
  1121 -  N  Y  C  K  H  S  P  L  V  P  E  H  A  A  H   - 1135 
 
  3421 - TCGAGGTGCTAACCGACCCTCCGCTCTCGAAAATCACGGCCACAC  - 3465 
  1136 -  R  G  A  N  R  P  S  A  L  E  N  H  G  H  T   - 1150 
 
  3466 - GTCTGTGACCTGCCGAGCGCTCCTCAGCGAGTCCCCTGCTAAGCT  - 3510 
  1151 -  S  V  T  C  R  A  L  L  S  E  S  P  A  K  L   - 1165 
 
  3511 - CCCGATCGACGTTGCAACAGATCTGACAGCAGTGAACGGTCTTTC  - 3555 
  1166 -  P  I  D  V  A  T  D  L  T  A  V  N  G  L  S   - 1180 
 
  3556 - GTACAATAAAAATCTTGCCAATGGCAGTTACGACTTAGCTAACAG  - 3600 
  1181 -  Y  N  K  N  L  A  N  G  S  Y  D  L  A  N  R   - 1195 
 
  3601 - AGACTTTTGCCAAGGAAATCATCTGAGTTACTACAAGCAGGAAAT  - 3645 
  1196 -  D  F  C  Q  G  N  H  L  S  Y  Y  K  Q  E  I   - 1210 
 
  3646 - ACCTGTACAACCAACTACCTCATATCCCATTCAGAATTTATACAA  - 3690 
  1211 -  P  V  Q  P  T  T  S  Y  P  I  Q  N  L  Y  N   - 1225 
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  3691 - TTACGAGAACCAGCCCCAGCCCAGCGATGAATGTACTCTACTGAG  - 3735 
  1226 -  Y  E  N  Q  P  Q  P  S  D  E  C  T  L  L  S   - 1240 
 
  3736 - TAATAAATACCTTGATGGAAATGCTAACAAATCTACCTCAGAAGG  - 3780 
  1241 -  N  K  Y  L  D  G  N  A  N  K  S  T  S  E  G   - 1255 
 
  3781 - ACGTCCCACGATGCCTGGTACTACAGAGGCTGGTAAGGCGCTTTC  - 3825 
  1256 -  R  P  T  M  P  G  T  T  E  A  G  K  A  L  S   - 1270 
 
  3826 - GGAAAGGATGGCTTCTGCGCAGAGCCCTGCTCCGGGCTACTCCCC  - 3870 
  1271 -  E  R  M  A  S  A  Q  S  P  A  P  G  Y  S  P   - 1285 
 
  3871 - GAGGACTCCTGGCCCAAACCCTGGACTCATCCTTCAGGCTCTGAC  - 3915 
  1286 -  R  T  P  G  P  N  P  G  L  I  L  Q  A  L  T   - 1300 
 
  3916 - CCTTTCAAACGCTAGCGACGGATTTAACCTGGAGCGGCTCGAAAT  - 3960 
  1301 -  L  S  N  A  S  D  G  F  N  L  E  R  L  E  M   - 1315 
 
  3961 - GCTCGGTGACTCCTTCTTAAAGCACGCCATCACCACGTATCTCTT  - 4005 
  1316 -  L  G  D  S  F  L  K  H  A  I  T  T  Y  L  F   - 1330 
 
  4006 - TTGCACTTACCCTGATGCTCACGAGGGCCGCCTTTCGTATATGAG  - 4050 
  1331 -  C  T  Y  P  D  A  H  E  G  R  L  S  Y  M  R   - 1345 
 
  4051 - AAGCAAAAAGGTCAGCAACTGTAACCTGTATCGGCTTGGGAAGAA  - 4095 
  1346 -  S  K  K  V  S  N  C  N  L  Y  R  L  G  K  K   - 1360 
 
  4096 - GAAGGGCCTGCCCAGCCGCATGGTGGTGTCGATATTTGATCCCCC  - 4140 
  1361 -  K  G  L  P  S  R  M  V  V  S  I  F  D  P  P   - 1375 
 
  4141 - TGTGAACTGGCTTCCTCCTGGTTATGTAGTAAATCAAGACAAAAG  - 4185 
  1376 -  V  N  W  L  P  P  G  Y  V  V  N  Q  D  K  S   - 1390 
 
  4186 - TAACACAGACAAATGGGAAAAAGATGAAATGACAAAAGACTGCGT  - 4230 
  1391 -  N  T  D  K  W  E  K  D  E  M  T  K  D  C  V   - 1405 
 
  4231 - GCTGGCTAACGGCAGACTGGACGCCGACCTGGAGGAGGAGGACGC  - 4275 
  1406 -  L  A  N  G  R  L  D  A  D  L  E  E  E  D  A   - 1420 
 
  4276 - CGCCGCGCTCATGTGGAGGCCGCCCAGGGAGGAGGCCGAGGACGA  - 4320 
  1421 -  A  A  L  M  W  R  P  P  R  E  E  A  E  D  D   - 1435 
 
  4321 - CGAGGACCTCCTGGAGTACGACCAGGAGCACATCAGGTTCATAGA  - 4365 
  1436 -  E  D  L  L  E  Y  D  Q  E  H  I  R  F  I  D   - 1450 
   
  4366 - CAGCATGCTGATGGGGTCAGGAGCCTTCGTCAAGAAGATTGCTCT  - 4410 
  1451 -  S  M  L  M  G  S  G  A  F  V  K  K  I  A  L   - 1465 
 
  4411 - TGCTCCCTTCGCCGCCGCCGATCCTGCCTACGAATGGAAGATGCC  - 4455 
  1466 -  A  P  F  A  A  A  D  P  A  Y  E  W  K  M  P   - 1480 
 
  4456 - CAAAAAGGCCCCCCTGGGGAGCATGCCCTTTTCCGCAGATTTCGA  - 4500 
  1481 -  K  K  A  P  L  G  S  M  P  F  S  A  D  F  E   - 1495 
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  4501 - GGACTTTGACTACAGCTCGTGGGATGCCATGTGCTATCTGGACCC  - 4545 
  1496 -  D  F  D  Y  S  S  W  D  A  M  C  Y  L  D  P   - 1510 
 
  4546 - CAGCAAAGCCGTTGAGGAGGATGACTTTGTGGTGGGCTTCTGGAA  - 4590 
  1511 -  S  K  A  V  E  E  D  D  F  V  V  G  F  W  N   - 1525 
 
  4591 - TCCATCCGAAGAGAACTGTGGTGTGGACACAGGCAAACAGTCCAT  - 4635 
  1526 -  P  S  E  E  N  C  G  V  D  T  G  K  Q  S  I   - 1540 
 
  4636 - TTCTTACGACTTGCACACGGAGCAGTGCATCGCTGACAAAAGCAT  - 4680 
  1541 -  S  Y  D  L  H  T  E  Q  C  I  A  D  K  S  I   - 1555 
 
  4681 - CGCCGACTGTGTGGAAGCCCTGCTGGGCTGCTACTTGACCAGCTG  - 4725 
  1556 -  A  D  C  V  E  A  L  L  G  C  Y  L  T  S  C   - 1570 
 
  4726 - TGGCGAGCGGGCCGCTCAGCTCTTCCTCTGCTCGCTGGGCCTGAA  - 4770 
  1571 -  G  E  R  A  A  Q  L  F  L  C  S  L  G  L  K   - 1585 
 
  4771 - GGTGCTCCCGGCGGTGAAGAGGACCGATCGGGCACAGGCCGCCTG  - 4815 
  1586 -  V  L  P  A  V  K  R  T  D  R  A  Q  A  A  C   - 1600 
 
  4816 - CCCGGCCAGGGAGAGCTTCACCAGCCAACAAAAGACCCTTTCCGG  - 4860 
  1601 -  P  A  R  E  S  F  T  S  Q  Q  K  T  L  S  G   - 1615 
 
  4861 - GGGCCGGCCCGCCGCCGGCTCCCGCTCTTCCGGGTTGAAAGACTT  - 4905 
  1616 -  G  R  P  A  A  G  S  R  S  S  G  L  K  D  L   - 1630 
 
  4906 - GGAGTACGGCTGTTTGAAGATCCCACCGAGATGTATGTTTGATCA  - 4950 
  1631 -  E  Y  G  C  L  K  I  P  P  R  C  M  F  D  H   - 1645 
 
  4951 - CCCAGACGCAGACAGGACACTCAGTCACCTCATCTCGGGCTTTGA  - 4995 
  1646 -  P  D  A  D  R  T  L  S  H  L  I  S  G  F  E   - 1660 
 
  4996 - GAACTTCGAAAGGAAGATCAACTACAGCTTCAAGAATAAGGCTTA  - 5040 
  1661 -  N  F  E  R  K  I  N  Y  S  F  K  N  K  A  Y   - 1675 
 
  5041 - CCTTCTGCAGGCCTTCACCCACGCCTCCTACCACTACAACACCAT  - 5085 
  1676 -  L  L  Q  A  F  T  H  A  S  Y  H  Y  N  T  I   - 1690 
 
  5086 - CACCGATTGTTACCAGCGCCTGGAGTTCCTGGGAGATGCCATTCT  - 5130 
  1691 -  T  D  C  Y  Q  R  L  E  F  L  G  D  A  I  L   - 1705 
 
  5131 - GGACTACCTCATAACCAAGCACCTTTACGAAGACCCGCGGCAGCA  - 5175 
  1706 -  D  Y  L  I  T  K  H  L  Y  E  D  P  R  Q  H   - 1720 
   
  5176 - CTCCCCGGGGGTCCTGACCGACCTGCGCTCTGCTCTGGTCAACAA  - 5220 
  1721 -  S  P  G  V  L  T  D  L  R  S  A  L  V  N  N   - 1735 
 
  5221 - CACCATCTTCGCCTCGCTGGCCGTCAAGTACGACTACCACAAGTA  - 5265 
  1736 -  T  I  F  A  S  L  A  V  K  Y  D  Y  H  K  Y   - 1750 
   
  5266 - CTTCAAGGCCGTGTCGCCCGAGCTCTTCCACGTCATCGATGATTT  - 5310 
  1751 -  F  K  A  V  S  P  E  L  F  H  V  I  D  D  F   - 1765 
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  5311 - TGTGCAGTTTCAGCTTGAGAAGAACGAGATGCAGGGGATGGATTC  - 5355 
  1766 -  V  Q  F  Q  L  E  K  N  E  M  Q  G  M  D  S   - 1780 
 
  5356 - TGAGCTTAGGAGATCTGAGGAGGATGAAGAGAAAGAAGAGGATAT  - 5400 
  1781 -  E  L  R  R  S  E  E  D  E  E  K  E  E  D  I   - 1795 
 
  5401 - TGAAGTTCCGAAGGCCATGGGGGACATTTTTGAGTCGCTTGCTGG  - 5445 
  1796 -  E  V  P  K  A  M  G  D  I  F  E  S  L  A  G   - 1810 
 
  5446 - TGCCATTTACATGGATAGTGGAATGTCACTGGAGGTGGTTTGGCA  - 5490 
  1811 -  A  I  Y  M  D  S  G  M  S  L  E  V  V  W  Q   - 1825 
 
  5491 - GGTGTACTATCCGATGATGCGGCCGCTAATAGAAAAATTTTCTGC  - 5535 
  1826 -  V  Y  Y  P  M  M  R  P  L  I  E  K  F  S  A   - 1840 
 
  5536 - AAACGTGCCCCGTTCGCCTGTGCGAGAATTGCTTGAAATGGAACC  - 5580 
  1841 -  N  V  P  R  S  P  V  R  E  L  L  E  M  E  P   - 1855 
 
  5581 - AGAAACCGCCAAATTTAGCCCGGCTGAGAGAACTTACGATGGCAA  - 5625 
  1856 -  E  T  A  K  F  S  P  A  E  R  T  Y  D  G  K   - 1870 
 
  5626 - GGTCAGAGTCACCGTGGAAGTCGTAGGAAAGGGGAAATTCAAAGG  - 5670 
  1871 -  V  R  V  T  V  E  V  V  G  K  G  K  F  K  G   - 1885 
 
  5671 - TGTTGGCCGAAGTTACAGGATTGCCAAATCTGCAGCAGCACGACG  - 5715 
  1886 -  V  G  R  S  Y  R  I  A  K  S  A  A  A  R  R   - 1900 
 
  5716 - AGCCCTGCGAAGCCTCAAAGCTAATCAACCTCAGGTTCCCAACAG  - 5760 
  1901 -  A  L  R  S  L  K  A  N  Q  P  Q  V  P  N  S   - 1915 
 
  5761 - CTGAAACCCCTTTTTAAAATAACGAAAAGAAGCAGAGTTAAGGTG  - 5805 
  1916 -  *   
 
  5806 - GAAAATATTTAAGTGGAAAAGGATGATTTAAAATTGGCAGTGAGT  - 5850 
  1916 -    
 
  5851 - GGAATGAATTGAAGGCAGAAGTTAAAGTTTGATAACAAGCTAGAT  - 5895 
  1916 -   
 
  5896 - TGCAGAATAAAACATTTAACATATGTATAAAACCTTTGGAACTAA  - 5940 
  1916 -   
 
  5941 - TTGTAGTTTTAGTTTTTTGCGCAAACACAATCTTGTCTTCTTTCC  - 5985 
  1916 -   
  
  5986 - TCACTTCTGC                                     - 5995 
  1916  
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Table 2.3:  Protein translation of pDicer cDNA aligned with bovine and 
human Dicer protein sequences.  Color-coded regions indicate known 
domains, as reported for bovine Dicer (accession AY386968.1).  Red = 
DEXDc;  Purple = Helicase domain; Orange = dsRNA binding domain;  
Green = PAZ domain;  Blue = RNase III domains 
 

 
Bovine   MKSPALQPLSMAGLQLMTPASSPMGPFFGLPWQQEAIHDNIYTPRKYQVELLEAALDHNT 60 
Human    MKSPALQPLSMAGLQLMTPASSPMGPFFGLPWQQEAIHDNIYTPRKYQVELLEAALDHNT 60 
Porcine  MKSPALQPLSMAGLQLMTPASSPMGPFFGLPWQQEAIHDNIYTPRKYQVELLEAALDHNT 60 
         ************************************************************ 
 
Bovine   IVCLNTGSGKTFIAVLLTKELSYQIRGDFNRNGKRTVFLVNSANQVAQQVSAVRTHSDLK 120 
Human    IVCLNTGSGKTFIAVLLTKELSYQIRGDFSRNGKRTVFLVNSANQVAQQVSAVRTHSDLK 120 
Porcine  IVCLNTGSGKTFIAVLLTKELSYQIRGDFNRNGKRTVFLVNSANQVAQQVSAVRTHSDLK 120 
         *****************************.****************************** 
 
Bovine   VGEYSNLEVSASWTKEKWNQEFTKHQVLIMTCYVALNVLKNGYLSLSDINLLVFDECHLA 180 
Human    VGEYSNLEVNASWTKERWNQEFTKHQVLIMTCYVALNVLKNGYLSLSDINLLVFDECHLA 180 
Porcine  VGEYSNLEVNASWTKEKWNQEFTKHQVLVMTCSVALNVLKNGYLALSDINLLVFDECHLA 180 
         *********.******:***********:*** ***********:*************** 
 
Bovine   ILDHPYREIMKLCENCPSCPRILGLTASILNGKCDPEELEEKIQKLEKILKSNAETATDL 240 
Human    ILDHPYREIMKLCENCPSCPRILGLTASILNGKCDPEELEEKIQKLEKILKSNAETATDL 240 
Porcine  ILDHPYREIMKLCENCPSCPRILGLTASILNGKCDPEELEEKIQKLEKILKSNAETATDL 240 
         ************************************************************ 
 
Bovine   VVLDRYTSQPCEIVVDCGPFTDRSGLYERLLMELEEALNFINDCNISVHSKERDSTLISK 300 
Human    VVLDRYTSQPCEIVVDCGPFTDRSGLYERLLMELEEALNFINDCNISVHSKERDSTLISK 300 
Porcine  VVLDRYTSQPCEIVVDCGPFTDRSGLYERLLMELEEALNFINDCNIAVHSKERDSTLISK 300 
         **********************************************:************* 
 
Bovine   QILSDCRAVLVVLGPWCADKVAGMMVRELQKHIKHEQEELHRKFLLFTDTFLRKIHALCE 360 
Human    QILSDCRAVLVVLGPWCADKVAGMMVRELQKYIKHEQEELHRKFLLFTDTFLRKIHALCE 360 
Porcine  QILSDCRAVLVVLGPWCADKVAGMMVRELQKYIKHEQEELHRKFLLFTDTFLRKVHALCE 360 
         *******************************:**********************:***** 
 
Bovine   EHFSPASLDLKFVTPKVIKLLEILRKYKPYERQQFESVEWYNNRNQDNYVSWSDSEDDEE 420 
Human    EHFSPASLDLKFVTPKVIKLLEILRKYKPYERQQFESVEWYNNRNQDNYVSWSDSEDDDE 420 
Porcine  GHFSPAALDLRFVTPKVIKLLEILRKYKPYERQQFESVEWYNNRNQDNYVSWSDSEDDEE 420 
         *****:***:***********************************************:* 
 
Bovine   DEEIEEKEKPETNFPSPFTNILCGIIFVERRYTAVVLNRLIKEAGKQDPELAYISS-NFI 479 
Human    DEEIEEKEKPETNFPSPFTNILCGIIFVERRYTAVVLNRLIKEAGKQDPELAYISS-NFI 479 
Porcine  DEEIEEKEKPETNFPSPFTNILCGIIFVERRYTAVVLNRLIKEAGKQDPELAYISSSNFI 480 
         ******************************************************** *** 
 
Bovine   TGHGIGKNQPRNKQMEAEFRKQEEVLRKFRAHETNLLIATSIVEEGVDIPKCNLVVRFDL 539 
Human    TGHGIGKNQPRNKQMEAEFRKQEEVLRKFRAHETNLLIATSIVEEGVDIPKCNLVVRFDL 539 
Porcine  TGHGIGKNQPRNKQMEAEFRKQEEVLRKFRAHETNLLIATSIVEEGVDIPXCNLVVRFDL 540 
         ************************************************** ********* 
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Bovine   PTEYRSYVQSKGRARAPISNYVMLADTDKIKSFEEDLKTYKAIEKILRNKCSKSVDTGEA 599 
Human    PTEYRSYVQSKGRARAPISNYIMLADTDKIKSFEEDLKTYKAIEKILRNKCSKSVDTGET 599 
Porcine  PTEYRSYVQSKGRARAPISNYVMLADTDKIKSFEEDLKTYKAIEKILRNKCSKSVESGET 600 
         *********************:*********************************::**: 
 
Bovine   DTEPVVDDDDVFPPYVLRPEDG-PRVTINTAIGHVNRYCARLPSDPFTHLAPKCRTRELP 658 
Human    DIDPVMDDDDVFPPYVLRPDDGGPRVTINTAIGHINRYCARLPSDPFTHLAPKCRTRELP 659 
Porcine  DLEPVVDDDDIFPPYVLRPDDGGPRVTINTAIGHINRYCARLPSDPFTHLAPKCRTRELP 660 
         * :**:****:********:** ***********:************************* 
 
Bovine   DGTFYSTLYLPINSPLRASIVGPPMSCIRLAERVVALICCEKLHKIGELDDHLMPVGKET 718 
Human    DGTFYSTLYLPINSPLRASIVGPPMSCVRLAERVVALICCEKLHKIGELDDHLMPVGKET 719 
Porcine  DGTFYSTLYLPINSPLRASIVGPPMSCIRLAERVVALICCEKLHKIGELDDHLMPVGKET 720 
         ***************************:******************************** 
 
Bovine   VKYEEELDLHDEEETSVPGRPGSTKRRQCYPKAIPECLRESYPRPGQPCYLYVIGMVLTT 778 
Human    VKYEEELDLHDEEETSVPGRPGSTKRRQCYPKAIPECLRDSYPRPDQPCYLYVIGMVLTT 779 
Porcine  VKYEEELDLHDEEETSVPGRPGSTKRRQCYPKAIPECLRDSYPKPDQPCYLYVIGMVLTT 780 
         ***************************************:***:*.************** 
 
Bovine   PLPDELNFRRRKLYPPEDTTRCFGILTAKPIPQIPHFPVYTRSGEVTISIELKKSGFTLS 838 
Human    PLPDELNFRRRKLYPPEDTTRCFGILTAKPIPQIPHFPVYTRSGEVTISIELKKSGFMLS 839 
Porcine  PLPDELNFRRRKLYPPEDTTRCFGILTAKPIPQIPHFPVYTRSGEVTISIELKKSGFTLS 840 
         ********************************************************* ** 
 
Bovine   LQMLELITRLHQYIFSHILRLEKPALEFKPTDADSAYCVLPLNVVNDSSTLDIDFKFMED 898 
Human    LQMLELITRLHQYIFSHILRLEKPALEFKPTDADSAYCVLPLNVVNDSSTLDIDFKFMED 899 
Porcine  LQMLELITRLHQYIFSHILRLEKPALEFKPTDADSAYCVLPLNVVNDSSTLDIDFKFMED 900 
         ************************************************************ 
 
Bovine   IEKSEARIGIPSTKYSKETPFVFKLEDYQDAVIIPRYRNFDQPHRFYVADVYTDLTPLSK 958 
Human    IEKSEARIGIPSTKYTKETPFVFKLEDYQDAVIIPRYRNFDQPHRFYVADVYTDLTPLSK 959 
Porcine  IEKSEARIGIPSTKYSKETPFVFKLEDYQDAVIIPRYRNFDQPHRFYVADVYTDLTPLSK 960 
         ***************:******************************************** 
 
Bovine   FPSPEYETFAEYYKTKYNLDLTNLNQPLLDVDHTSSRLNLLTPRHLNQKGKALPLSSAEK 1018 
Human    FPSPEYETFAEYYKTKYNLDLTNLNQPLLDVDHTSSRLNLLTPRHLNQKGKALPLSSAEK 1019 
Porcine  FPSPEYETFAEYYKTKYNLDLTNLNQPLLDVDHTSSRLNLLTPRHLNQKGKALPLSSAEK 1020 
         ************************************************************ 
 
Bovine   RKAKWESLQNKQILVPELCAIHPIPASLWRKAVCLPSILYRLHCLLTAEELRAQTASDAG 1078 
Human    RKAKWESLQNKQILVPELCAIHPIPASLWRKAVCLPSILYRLHCLLTAEELRAQTASDAG 1079 
Porcine  RKAKWESLQNKQILVPELCAIHPIPASLWRKAVCLPSILYRLHCLLTAEELRAQTASDAG 1080 
         ************************************************************ 
 
Bovine   VGVRSLPVDFRYPNLDFGWKKSIDSKSFISIANSSSAENENYCKHSTIVVPENAAHQGAN 1138 
Human    VGVRSLPADFRYPNLDFGWKKSIDSKSFISISNSSSAENDNYCKHSTIVP-ENAAHQGAN 1138 
Porcine  VGVRSLPVDFRYPNLDFGWKKSIDSKSFISVANSSSAENENYCKHSPLVP-EHAAHRGAN 1139 
         *******.**********************::*******:******.:*  *:***:*** 
 
Bovine   RTSPLENHDQMSVNCRTLFSESPGKLQIEVSTDLTAINGLSYNKSLANGSYDLANRDFCQ 1198 
Human    RTSSLENHDQMSVNCRTLLSESPGKLHVEVSADLTAINGLSYNQNLANGSYDLANRDFCQ 1198 
Porcine  RPSALENHGHTSVTCRALLSESPAKLPIDVATDLTAVNGLSYNKNLANGSYDLANRDFCQ 1199 
         *.*.****.: **.**:*:****.** ::*::****:******:.*************** 
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Bovine   GNHLNYYKQEIPVQPTTSYPIQNLYNYENQPKPSDECTLLSNKYLDGNANTSTSDGSPVT 1258 
Human    GNQLNYYKQEIPVQPTTSYSIQNLYSYENQPQPSDECTLLSNKYLDGNANKSTSDGSPVM 1258 
Porcine  GNHLSYYKQEIPVQPTTSYPIQNLYNYENQPQPSDECTLLSNKYLDGNANKSTSEGRP-- 1257 
         **:*.**************.*****.*****:******************.***:* *   
 
Bovine   AAVPGTTETGEAPPDRTASEQSPSPGYSSRTLGPNPGLILQALTLSNASDGFNLERLEML 1318 
Human    AVMPGTTDTIQVLKGRMDSEQSPSIGYSSRTLGPNPGLILQALTLSNASDGFNLERLEML 1318 
Porcine  -TMPGTTEAGKALSERMASAQSPAPGYSPRTPGPNPGLILQALTLSNASDGFNLERLEML 1316 
         .:****:: :.   *  * ***: ***.** **************************** 
 
Bovine   GDSFLKHAITTVSLSALILDAHEGRLSYMRSKKVSNCNLYRLGKKKGLPSRMVVSIFDPP 1378 
Human    GDSFLKHAITTY-LFCTYPDAHEGRLSYMRSKKVSNCNLYRLGKKKGLPSRMVVSIFDPP 1377 
Porcine  GDSFLKHAITTY-LFCTYPDAHEGRLSYMRSKKVSNCNLYRLGKKKGLPSRMVVSIFDPP 1375 
         ***********  * .   ***************************************** 
 
Bovine   VNGLPPGYVVNQDKSNTEKWEKDEMTKDCMLANGKLDDDFEEEEEEEEDLMWRAHKEDAD 1438 
Human    VNWLPPGYVVNQDKSNTDKWEKDEMTKDCMLANGKLDEDYEEEDEEEESLMWRAPKEEAD 1437 
Porcine  VNWLPPGYVVNQDKSNTDKWEKDEMTKDCVLANGRLDADLEEED--AAALMWRPPREEAE 1433 
         ** **************:***********:****:** * ***:     ****. :*:*: 
 
Bovine   DEDDFLEYDQEHIKFIDNMLMGSGAFVKKISLSPFSATDSAYEWKMPKKSSLGSLPFSSD 1498 
Human    YEDDFLEYDQEHIRFIDNMLMGSGAFVKKISLSPFSTTDSAYEWKMPKKSSLGSMPFSSD 1497 
Porcine  DDEDLLEYDQEHIRFIDSMLMGSGAFVKKIALAPFAAADPAYEWKMPKKAPLGSMPFSAD 1493 
         ::*:********:***.************:*:**:::*.*********:.***:***:* 
 
Bovine   FEDFDYSSWDAMCYLDPSKAVEEDDFVVGFWNPSEENCGVDTGKQSISYDLHTEQCIADK 1558 
Human    FEDFDYSSWDAMCYLDPSKAVEEDDFVVGFWNPSEENCGVDTGKQSISYDLHTEQCIADK 1557 
Porcine  FEDFDYSSWDAMCYLDPSKAVEEDDFVVGFWNPSEENCGVDTGKQSISYDLHTEQCIADK 1553 
         ************************************************************ 
 
Bovine   SIADCVEALLGCYLTSCGERAAQLFLCSLGLKVLPVIKRTDREKAMCPTRENFTSQQKNL 1618 
Human    SIADCVEALLGCYLTSCGERAAQLFLCSLGLKVLPVIKRTDREKALCPTRENFNSQQKNL 1617 
Porcine  SIADCVEALLGCYLTSCGERAAQLFLCSLGLKVLPAVKRTDRAQAACPARESFTSQQKTL 1613 
         ***********************************.:***** :* **:**.*.****.* 
 
Bovine   SGSRAAASGAGYRASVLKDLEYGCLKIPPRCMFDHPEADRTLRHLISGFENFEKKINYRF 1678 
Human    SVSCAAASVASSRSSVLKDSEYGCLKIPPRCMFDHPDADKTLNHLISGFENFEKKINYRF 1677 
Porcine  SGGRPAA---GSRSSGLKDLEYGCLKIPPRCMFDHPDADRTLSHLISGFENFERKINYSF 1670 
         * . .**   . *:* *** ****************:**:** **********:**** * 
 
Bovine   KNKAYLLQAFTHASYHYNTITDCYQRLEFLGDAILDYLITKHLYEDPRQHSPGVLTDLRS 1738 
Human    KNKAYLLQAFTHASYHYNTITDCYQRLEFLGDAILDYLITKHLYEDPRQHSPGVLTDLRS 1737 
Porcine  KNKAYLLQAFTHASYHYNTITDCYQRLEFLGDAILDYLITKHLYEDPRQHSPGVLTDLRS 1730 
         ************************************************************ 
 
Bovine   ALVNNTIFASLAVKYDYHKYFKAVSPELFHVIDDFVQFQLEKNEMQGMDSELRRSEEDEE 1798 
Human    ALVNNTIFASLAVKYDYHKYFKAVSPELFHVIDDFVQFQLEKNEMQGMDSELRRSEEDEE 1797 
Porcine  ALVNNTIFASLAVKYDYHKYFKAVSPELFHVIDDFVQFQLEKNEMQGMDSELRRSEEDEE 1790 
         ************************************************************ 
 
Bovine   KEEDIEVPKAMGDIFESLAGAIYMDSGMSLETVWQVYYPMMRPLIEKFSANVPRSPVREL 1858 
Human    KEEDIEVPKAMGDIFESLAGAIYMDSGMSLETVWQVYYPMMRPLIEKFSANVPRSPVREL 1857 
Porcine  KEEDIEVPKAMGDIFESLAGAIYMDSGMSLEVVWQVYYPMMRPLIEKFSANVPRSPVREL 1850 
         *******************************.**************************** 
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Bovine   LEMEPEITKFSPAERTYDGKVRVTVEVVGKGKFKGVGRSYRIAKSAAARRALRSLKANQP 1918 
Human    LEMEPETAKFSPAERTYDGKVRVTVEVVGKGKFKGVGRSYRIAKSAAARRALRSLKANQP 1917 
Porcine  LEMEPETAKFSPAERTYDGKVRVTVEVVGKGKFKGVGRSYRIAKSAAARRALRSLKANQP 1910 
         ****** :**************************************************** 
 
Bovine   QVPNS 1923 
Human    QVPNS 1922 
Porcine  QVPNS 1915 
         ***** 

 
 
 
Table 2.4:  Percent identity of the pDicer nucleotide and amino acid 
sequences in comparison to bovine, human, and mouse. 
 

 Porcine  
 Nucleotide Amino Acid 

Bovine 91 94 
Human 90 94 
Mouse 86 92 

 
 
 
Expression Data 

 Preliminary expression data of pDicer in sperm, oocytes, and embryos indicated 

that pDicer is expressed in porcine MII oocytes and hatched blastocysts.  The data also 

indicated that pDicer is not expressed, in detectable quantity, in sperm or 8-cell embryos 

(Figure 2.3).   
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Figure 2.3:  Agarose check-gel for Dicer endpoint PCR in sperm, oocytes, 
and embryos.  Lanes:  molecular weight ladder; (-) negative control: H2O 
blank; (+) positive control: Ago2 in MII oocytes; Sp:  Sperm;  MII:  MII 
oocytes;  8c:  8 cell embryo; HB:  hatched blastocyst. 

 

 

Discussion 

 Cloning and sequencing of pDicer indicate that Dicer is highly conserved among 

species.  Our data confirm the presence of Dicer in porcine ovary, oocytes, 8-cell and 

blastocyst embryos.  The data indicate that the pDicer message of maternal origin is lost 

or drastically decreased at the 8-cell stage but rebounds by the Day 7 blastocyst stage.  

These data support other observations identifying miRNA pathways present during 

embryonic development and the possible impact miRNA has on porcine embryonic 

development.  At the hatched blastocyst stage, the embryo is likely producing its own 

Dicer protein.  Many studies have shown that the knock-out of Dicer leads to 

abnormalities in the early embryo.  This is consistent with our preliminary data in pigs, 

which indicate that Dicer is produced by the embryo very early in development.  Further 
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work is needed to elucidate Dicer expression in other early stage embryos (i.e. 16-cell, 

morula, expanded blastocyst, etc.) and to determine if the ontogeny or level of Dicer 

expression can impact embryo development and differs between in vivo and in vitro 

produced embryos.   

 Research has clearly indicated that Dicer is required for the processing of miRNA 

and essential for normal development.  Characterizing Dicer ontogeny throughout 

porcine embryonic development will begin elucidating miRNA involvement during early 

development in this species.  Furthermore, once normal Dicer expression during porcine 

embryonic development has been described, studies can be done to evaluate aberrations 

in Dicer expression that may occur during in developmentally compromised embryos.  

Ultimately, characterizing the miRNA pathway during porcine embryonic development 

may offer valuable insight into potential causes of aberrant embryonic development. 
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CHAPTER THREE 

CLONING AND EXPRESSION OF PORCINE ARGONAUTE-2 

 

Introduction 

Recently, a class of small non-coding RNA has been shown to be involved in 

embryonic development, and may help explain altered embryonic development when 

using ART techniques.  These 22nt RNA are called microRNA (miRNA).  miRNA was 

shown to play a key role in embryo development when the knock-out of Dicer, an 

important protein in the production of miRNA, proved to be embryo lethal (Bernstein et 

al, 2003).  By binding to messenger RNA (mRNA) and silencing or degrading the 

message, miRNA function to regulate translation and does so via another class of proteins 

known as Argonaute.  An Argonaute protein is the main protein component of the RNA 

induced silencing complex (RISC) which carries miRNA to its target.  Four Argonaute 

proteins have been identified in humans (Sasaki et al, 2003), only one of which, 

Argonaute-2 (Ago2), exhibits endonuclease activity to degrade the mRNA to which 

miRNA binds (Meister et al, 2004; Liu et al, 2004).   

Our objective is to understand the miRNA pathway in large animals, including: 

identifying miRNA expressed in reproductive tissues, describing the ontogeny of this 

pathway, and identifying in these animals the major proteins involved in the synthesis 

and function of miRNA.  Ago2 has yet to be identified in pigs.  The objective of this 

study was to clone the cDNA for porcine Ago2 (pAgo2), as well as verify its expression 

in multiple reproductive tissues including oocytes and developing embryos.  We 
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hypothesize that the Ago2 sequence is highly conserved in pigs and that its message is 

expressed in porcine embryos during the time of fetal genome activation.   

 

Materials and Methods 

RNA Isolation 

Porcine ovaries were obtained from nearby abattoirs, frozen in liquid nitrogen, 

and stored at -80° C until further processed.  Sections weighing approximately 200 mg 

were obtained from the frozen ovaries and used for total cellular RNA (tcRNA) isolation 

using the mirVana miRNA isolation kit (Ambion, Austin, TX). 

 For verification of possible deletions, two additional porcine ovaries were 

collected from separate gilts and two samples were taken from each ovary.  tcRNA was 

isolated from all four samples and subjected to endpoint PCR.  

 

RT-PCR/Primer Design 

RNA was subjected to endpoint RT-PCR using SuperScript™ III First-Strand 

Synthesis Super Mix for reverse transcription (Invitrogen, Carlsbad, CA). The first strand 

reaction was utilized for PCR with GoTaq (Promega, Madison, WI).  All PCR reactions 

were run with a total volume of 25µl in an Eppendorf Mastercycler gradient thermocycler 

(Westbury, NY) according to the following program:  Lid: 95.0°; (1) T=95.0°, 3:00min; 

(2) T=94.0°, 0:30min; (3) T=(annealing temperature specific to primer set), 0:30min; (4) 

T=72.0°, 0:30min; (5) GOTO 2 Rep 34; (6) T= 72.0°, 3:00min; (7) HOLD 4.0°.   Specific 

annealing temperatures were obtained by running gradient programs for each primer set.  
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PCR products were subjected to non-denaturing slab gel electrophoresis, using 1.2 to 

2.0% TAE or TBE gels, and visualized using Ethidium Bromide (EtBr) staining and UV-

light exposure. 

To generate PCR primers, the cDNA sequences for bovine, human and mouse 

Ago2 (BC151491, NM012154, and NM153178, respectively) were aligned.  Primers 

were generated from highly conserved regions for each respective cDNA by using the 

Vector NTI program (Invitrogen, Carlsbad, CA) or were designed by hand following 

Rybicki’s guidelines in Molecular Biology Techniques Manual (2001).  Given the length 

of the coding sequence for Ago2, four primer sets were designed for four overlapping 

fragments, as illustrated in Figure 3.1.  Primer sequences are listed in Table 3.1.  Further 

primer sets were designed for Ago2 to confirm possible deletions.  These primers were 

designed to the porcine sequences obtained and were designated D2 and D3 (for deletion 

2 and deletion 3).  The following primer sets and corresponding fragments were used to 

generate the complete coding sequence for pAgo2:  Ia, II, D2, and IV (Figure 3.1). 

 

 

Figure 3.1:  pAgo2 cloning strategy using RT-PCR; based on bovine 
Ago2 cDNA sequence (approximately 3579bp; accession: BC151491).  
Fragment sizes shown.   
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Table 3.1:  Primer sequences for pAgo2 fragments and deletions. 

Fragment Forward Reverse 

Ia 5’-CGGCGGCGCCACCATGTACT 5’-GAGGTTTCTGTTGTTCTTCAATACT 

II 5'-TGGTTTGGCTTCCATCAGTC 5'-TCCTTGAAGTACTGGGCCAC 

III 5'-CAAGGATATGCCTTCAAGCC 5'-ATGACCACCACCAGCTGCAG 

IV 5'-CCTCTACGGGGGCAGGAATAA 5'-TCATGTTCGATGCTGGCTGTC 

D2 5’-TTGGGGATCGGAAACCAGTG 5’-CGTACGTGTTCTTCAGGTGC 

D3 5’-TGTGTAGCCATGCTGGCATCCA 5’-CCTTCGGCACTATCATGTTC 

 

Subcloning/Sequencing 

PCR products for each fragment were ligated into the pDrive Cloning Vector and 

transformed into competent E.coli cells using Qiagen PCR Cloning Kit (Qiagen, 

Valencia, CA).  Transformed cells were plated onto agar plates which had been treated 

with 100 mg/mL ampicillin; prior to plating cells, all plates were coated with 75-100 µl 

IPTG (isopropyl-beta-D-thiogalactopyranoside) and 75-100 µl X-gal (5-bromo-4-chloro-

3-indolyl-beta-D-galacto-pyranoside) for blue-white screening.  Plates were incubated at 

37° C overnight.  Subsequent colonies were selected, streaked onto new agar/+amp 

plates, and grown in LB media at 37° C overnight.  Plasmids were isolated from cultures 

using Qiagen QIAprep Spin Miniprep Kit (Qiagen, Valencia, CA).  Isolated plasmids 

were digested with EcoR1 to confirm insertion of the gene of interest, and sent to 

Clemson University Genomics Institute (CUGI, Clemson, SC) for sequencing.  Forward 

and reverse reactions using M13 primers were used for sequencing.  Four clones were 

sequenced for each fragment to rule out any GoTaq reading errors.   

Sequences were analyzed in Vector NTI (Invitrogen) and aligned to bovine, 

human, and mouse sequences, from which percent identities were obtained. 
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Embryo Collection 

Gilts were obtained from and housed individually at Starkey Swine Center, 

Clemson University.  Estrus detection began twice daily when the average gilt weight 

was approximately 118 kg.  Gilts were teased with a boar and artificially inseminated at 

standing estrus and 12 hours post-standing estrus using “mixed dark” Duroc semen 

obtained from Swine Genetics International (Cambridge, Iowa).  Inseminated gilts were 

slaughtered 3, 5, or 7 days post-insemination.  Reproductive tracts were collected at the 

time of slaughter and immediately (within 2 hours) flushed to retrieve embryos.  Tracts 

were flushed with approximately 100 mL solution of sterile PBS and BSA (4 g/L), which 

was subsequently filtered to collect the embryos.  Embryos were stored in RNAlater 

(Ambion, Austin, TX), snap-frozen in liquid nitrogen, and stored at -80° C until used for 

RNA Isolation. 

 

Results 

Sequencing 

The nucleotide sequence obtained for pAgo2 using our overlapping PCR strategy 

is 2,703 bp, with the coding sequence beginning at bp 14 and ending at bp 2,596 (Table 

3.2).  The translation of the pAgo2 cDNA sequence is 860 amino acids (Table 3.3) and 

has a sequence identity of 99.6% to bovine, 99.5% to human, and 99.2% to mouse (Table 

3.4).  For the coding sequence, alignments of pAgo2 with bovine, human, and mouse 

Ago2 sequences showed a sequence identity of 94.2%, 92.2%, and 89.4% respectively 

(Table 3.4).   
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Table 3.2:  Nucleotide sequence for pAgo2 with amino acid translation.   
 

      
     1 - CGGCGGCGCCACCATGTACTCGGGAGCCGGCCCCGTGCTCGCGCC  - 45  
     1 -              M  Y  S  G  A  G  P  V  L  A  P   - 11  
 
    46 - TCCTGCACCGCCACGGCCGCCCATCCAAGGATATGCCTTCAAGCC  - 90  
    12 -  P  A  P  P  R  P  P  I  Q  G  Y  A  F  K  P   - 26  
 
    91 - TCCACCTAGACCCGACTTCGGGACCTCCGGGAGAACAATCAAGTT  - 135  
    27 -  P  P  R  P  D  F  G  T  S  G  R  T  I  K  L   - 41  
 
   136 - ACAGGCCAACTTCTTTGAAATGGACATTCCAAAAATTGACATCTA  - 180  
    42 -  Q  A  N  F  F  E  M  D  I  P  K  I  D  I  Y   - 56  
 
   181 - TCATTATGAGTTGGATATCAAGCCAGAGAAATGCCCAAGGAGAGT  - 225  
    57 -  H  Y  E  L  D  I  K  P  E  K  C  P  R  R  V   - 71  
 
   226 - TAACAGGGAAGTAGTGGAACATATGGTTCAGCACTTTAAAACACA  - 270  
    72 -  N  R  E  V  V  E  H  M  V  Q  H  F  K  T  Q   - 86  
 
   271 - GATCTTTGGGGATCGGAAACCAGTGTTTGATGGAAGGAAGAATCT  - 315  
    87 -  I  F  G  D  R  K  P  V  F  D  G  R  K  N  L   - 101  
 
   316 - GTACACAGCGATGCCGCTTCCCATCGGGAGGGATAAGGTGGAGCT  - 360  
   102 -  Y  T  A  M  P  L  P  I  G  R  D  K  V  E  L   - 116  
 
   361 - GGAGGTCACACTGCCCGGAGAGGGGAAGGACCGCATCTTCAAGGT  - 405  
   117 -  E  V  T  L  P  G  E  G  K  D  R  I  F  K  V   - 131  
 
   406 - GTCCATCAAGTGGGTGTCCTGCGTGAGCTTACAGGCGTTACACGA  - 450  
   132 -  S  I  K  W  V  S  C  V  S  L  Q  A  L  H  D   - 146  
 
   451 - TGCACTTTCGGGGCGGCTGCCCAGCGTCCCCTTCGAGACGATCCA  - 495  
   147 -  A  L  S  G  R  L  P  S  V  P  F  E  T  I  Q   - 161  
 
   496 - GGCCCTGGATGTGGTCATGAGGCATTTGCCGTCCATGAGGTACAC  - 540  
   162 -  A  L  D  V  V  M  R  H  L  P  S  M  R  Y  T   - 176  
 
   541 - CCCTGTGGGCCGCTCCTTCTTCACGGCGTCTGAGGGCTGCTCCAA  - 585  
   177 -  P  V  G  R  S  F  F  T  A  S  E  G  C  S  N   - 191  
 
   586 - CCCCCTGGGCGGGGGCCGAGAAGTGTGGTTCGGCTTCCATCAGTC  - 630  
   192 -  P  L  G  G  G  R  E  V  W  F  G  F  H  Q  S   - 206  
 
   631 - GGTGCGGCCTTCCCTCTGGAAGATGATGCTGAACATTGACGTCTC  - 675  
   207 -  V  R  P  S  L  W  K  M  M  L  N  I  D  V  S   - 221  
 
   676 - GGCAACAGCGTTTTATAAGGCACAGCCAGTCATCGAGTTTGTGTG  - 720  
   222 -  A  T  A  F  Y  K  A  Q  P  V  I  E  F  V  C   - 236  
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   721 - TGAAGTCTTGGATTTTAAAAGTATTGAAGAACAACAAAAACCTCT  - 765  
   237 -  E  V  L  D  F  K  S  I  E  E  Q  Q  K  P  L   - 251  
 
   766 - GACAGATTCCCAAAGGGTAAAGTTTACCAAAGAAATCAAAGGTCT  - 810  
   252 -  T  D  S  Q  R  V  K  F  T  K  E  I  K  G  L   - 266  
 
   811 - CAAGGTGGAAATAACGCACTGCGGGCAGATGAAGAGGAAGTACCG  - 855  
   267 -  K  V  E  I  T  H  C  G  Q  M  K  R  K  Y  R   - 281  
 
   856 - CGTCTGCAATGTGACCCGGCGGCCCGCCAGTCACCAAACGTTCCC  - 900  
   282 -  V  C  N  V  T  R  R  P  A  S  H  Q  T  F  P   - 296  
 
   901 - GCTGCAGCAGGAGAGCGGGCAGACGGTCGAATGCACGGTGGCCCA  - 945  
   297 -  L  Q  Q  E  S  G  Q  T  V  E  C  T  V  A  Q   - 311  
 
   946 - GTACTTCAAGGACAGGCACAAGCTGGTTCTGCGCTACCCCCACCT  - 990  
   312 -  Y  F  K  D  R  H  K  L  V  L  R  Y  P  H  L   - 326  
 
   991 - CCCATGTTTACAAGTTGGACAGGAGCAGAAACACACCTACCTTCC  - 1035 
   327 -  P  C  L  Q  V  G  Q  E  Q  K  H  T  Y  L  P   - 341  
 
  1036 - CCTCGAGGTCTGTAACATAGTGGCGGGACAGAGATGTATAAAAAA  - 1080 
   342 -  L  E  V  C  N  I  V  A  G  Q  R  C  I  K  K   - 356  
 
  1081 - GCTGACCGACAATCAGACCTCAACCATGATCAGAGCCACAGCCAG  - 1125 
   357 -  L  T  D  N  Q  T  S  T  M  I  R  A  T  A  R   - 371  
 
  1126 - GTCAGCCCCTGATCGGCAGGAAGAGATTAGCAAACTGATGAGAAG  - 1170 
   372 -  S  A  P  D  R  Q  E  E  I  S  K  L  M  R  S   - 386  
 
  1171 - TGCCAGTTTCAACACAGACCCATATGTTCGTGAATTTGGAATCAT  - 1215 
   387 -  A  S  F  N  T  D  P  Y  V  R  E  F  G  I  M   - 401  
 
  1216 - GGTCAAAGACGAGATGACAGATGTGACCGGCCGGGTCCTCCAGCC  - 1260 
   402 -  V  K  D  E  M  T  D  V  T  G  R  V  L  Q  P   - 416  
 
  1261 - GCCCTCCATCCTCTACGGGGGCAGGAATAAAGCGATCGCCACCCC  - 1305 
   417 -  P  S  I  L  Y  G  G  R  N  K  A  I  A  T  P   - 431  
 
  1306 - AGTCCAGGGCGTCTGGGACATGAGGAACAAGCAGTTCCACACGGG  - 1350 
   432 -  V  Q  G  V  W  D  M  R  N  K  Q  F  H  T  G   - 446  
 
  1351 - CATCGAGATCAAGGTGTGGGCCATCGCGTGCTTCGCCCCCCAGCG  - 1395 
   447 -  I  E  I  K  V  W  A  I  A  C  F  A  P  Q  R   - 461  
 
  1396 - CCAGTGCACGGAGGTGCACCTCAAGTCCTTCACGGAGCAGCTCAG  - 1440 
   462 -  Q  C  T  E  V  H  L  K  S  F  T  E  Q  L  R   - 476  
 
  1441 - AAAGATCTCGAGAGACGCGGGAATGCCAATCCAGGGCCAGCCGTG  - 1485 
   477 -  K  I  S  R  D  A  G  M  P  I  Q  G  Q  P  C   - 491  
 
  1486 - CTTCTGTAAATACGCCCAGGGGGCGGACAGCGTGGAGCCCATGTT  - 1530 
   492 -  F  C  K  Y  A  Q  G  A  D  S  V  E  P  M  F   - 506  
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  1531 - CAGGCACCTGAAGAACACGTACGCCGGCCTGCAGCTGGTCGTGGT  - 1575 
   507 -  R  H  L  K  N  T  Y  A  G  L  Q  L  V  V  V   - 521  
 
  1576 - CATCCTGCCCGGGAAAACCCCCGTTTACGCCGAGGTCAAGCGTGT  - 1620 
   522 -  I  L  P  G  K  T  P  V  Y  A  E  V  K  R  V   - 536  
 
  1621 - GGGAGACACGGTGCTGGGCATGGCCACGCAGTGCGTGCAGATGAA  - 1665 
   537 -  G  D  T  V  L  G  M  A  T  Q  C  V  Q  M  K   - 551  
 
  1666 - GAACGTGCAGAGGACCACGCCGCAGACCCTGTCCAACCTCTGCCT  - 1710 
   552 -  N  V  Q  R  T  T  P  Q  T  L  S  N  L  C  L   - 566  
 
  1711 - GAAGATCAACGTCAAACTGGGGGGCGTCAACAACATCCTGCTGCC  - 1755 
   567 -  K  I  N  V  K  L  G  G  V  N  N  I  L  L  P   - 581  
 
  1756 - GCAGGGCAGGCCTCCAGTGTTCCAGCAGCCCGTCATCTTTCTGGG  - 1800 
   582 -  Q  G  R  P  P  V  F  Q  Q  P  V  I  F  L  G   - 596  
 
  1801 - AGCGGATGTCACTCACCCACCCGCCGGGGACGGCAAGAAGCCTTC  - 1845 
   597 -  A  D  V  T  H  P  P  A  G  D  G  K  K  P  S   - 611  
 
  1846 - CATCGCCGCCGTTGTGGGCAGCATGGACGCCCACCCCAACCGCTA  - 1890 
   612 -  I  A  A  V  V  G  S  M  D  A  H  P  N  R  Y   - 626  
 
  1891 - CTGCGCCACCGTCCGTGTCCAGCAGCACCGGCAGGAGATCATCCA  - 1935 
   627 -  C  A  T  V  R  V  Q  Q  H  R  Q  E  I  I  Q   - 641  
 
  1936 - GGACCTGGCGGCCATGGTGCGCGAGCTGCTCATCCAGTTCTACAA  - 1980 
   642 -  D  L  A  A  M  V  R  E  L  L  I  Q  F  Y  K   - 656  
 
  1981 - GTCCACGCGCTTCAAGCCCACGCGCATCATCTTCTACCGCGACGG  - 2025 
   657 -  S  T  R  F  K  P  T  R  I  I  F  Y  R  D  G   - 671  
 
  2026 - CGTCTCCGAGGGCCAGTTCCAGCAGGTCCTTCACCACGAGTTGCT  - 2070 
   672 -  V  S  E  G  Q  F  Q  Q  V  L  H  H  E  L  L   - 686  
 
  2071 - GGCCATCCGCGAGGCGTGCATCAAGCTAGAGAAGGACTACCAGCC  - 2115 
   687 -  A  I  R  E  A  C  I  K  L  E  K  D  Y  Q  P   - 701  
 
  2116 - GGGGATCACGTTCATCGTGGTCCAGAAGAGGCACCACACGCGGCT  - 2160 
   702 -  G  I  T  F  I  V  V  Q  K  R  H  H  T  R  L   - 716  
 
  2161 - CTTCTGCACGGACAAGAACGAGCGGGTTGGCAAAAGCGGAAACAT  - 2205 
   717 -  F  C  T  D  K  N  E  R  V  G  K  S  G  N  I   - 731  
 
  2206 - TCCAGCAGGCACAACCGTGGACACGAAAATCACCCACCCCACGGA  - 2250 
   732 -  P  A  G  T  T  V  D  T  K  I  T  H  P  T  E   - 746  
 
  2251 - GTTTGACTTCTACCTGTGTAGCCATGCTGGCATCCAGGGAACAAG  - 2295 
   747 -  F  D  F  Y  L  C  S  H  A  G  I  Q  G  T  S   - 761  
 
  2296 - CAGGCCTTCCCACTATCACGTGCTTTGGGATGACAATCGTTTCTC  - 2340 
   762 -  R  P  S  H  Y  H  V  L  W  D  D  N  R  F  S   - 776  
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  2341 - TTCCGATGAGCTGCAGATTCTCACCTACCAGCTGTGTCACACGTA  - 2385 
   777 -  S  D  E  L  Q  I  L  T  Y  Q  L  C  H  T  Y   - 791  
 
  2386 - TGTGCGCTGTACGCGCTCCGTGTCCATCCCGGCGCCAGCCTACTA  - 2430 
   792 -  V  R  C  T  R  S  V  S  I  P  A  P  A  Y  Y   - 806  
 
  2431 - TGCTCACCTGGTGGCCTTCCGGGCCAGGTACCACCTGGTGGATAA  - 2475 
   807 -  A  H  L  V  A  F  R  A  R  Y  H  L  V  D  K   - 821  
 
  2476 - AGAACATGATAGTGCCGAAGGAAGCCATACCTCCGGGCAGAGCAA  - 2520 
   822 -  E  H  D  S  A  E  G  S  H  T  S  G  Q  S  N   - 836  
 
  2521 - TGGACGCGACCATCAGGCCTTGGCCAAGGCCGTGCAGGTCCACCA  - 2565 
   837 -  G  R  D  H  Q  A  L  A  K  A  V  Q  V  H  Q   - 851  
 
  2566 - GGACACGCTGCGCACCATGTACTTTGCGTGACAAGTTTCAGTGTT  - 2610 
   852 -  D  T  L  R  T  M  Y  F  A  *                  - 860  
 
  2611 - TACGCTTGTGTACCGAGGTGGATTCACACGAGACCAGCTACACTC  - 2655 
   860 -  
 
  2656 - AGACCAACAAATGCCCAGCCCTTCCATGACAGCCAGCATCGAACA  - 2700 
   860 -    
 
  2701 - TGA                                            - 2703 
   860 -                                   

 

Table 3.3:  Protein translation of pAgo2 cDNA aligned with bovine and 
human Ago2 protein sequences.  Orange and blue fonts indicate sequence 
deletions (orange = D2;  blue = D3).  Domain regions highlighted:  yellow 
= DUF; green = PAZ domain; pink = Piwi domain. 
 

Bovine   MYSGAGPALAPPAPPPPPIQGYAFKPPPRPDFGTSGRTIKLQANFFEMDIPKIDIYHYEL 60 
Human    MYSGAGPALAPPAPPPP-IQGYAFKPPPRPDFGTSGRTIKLQANFFEMDIPKIDIYHYEL 59 
Porcine  MYSGAGPVLAPPAPPRPPIQGYAFKPPPRPDFGTSGRTIKLQANFFEMDIPKIDIYHYEL 60 
         *******.******* * ****************************************** 
 
Bovine   DIKPEKCPRRVNREIVEHMVQHFKTQIFGDRKPVFDGRKNLYTAMPLPIGRDKVELEVTL 120 
Human    DIKPEKCPRRVNREIVEHMVQHFKTQIFGDRKPVFDGRKNLYTAMPLPIGRDKVELEVTL 119 
Porcine  DIKPEKCPRRVNREVVEHMVQHFKTQIFGDRKPVFDGRKNLYTAMPLPIGRDKVELEVTL 120 
         **************:********************************************* 
 
Bovine   PGEGKDRIFKVSIKWVSCVSLQALHDALSGRLPSVPFETIQALDVVMRHLPSMRYTPVGR 180 
Human    PGEGKDRIFKVSIKWVSCVSLQALHDALSGRLPSVPFETIQALDVVMRHLPSMRYTPVGR 179 
Porcine  PGEGKDRIFKVSIKWVSCVSLQALHDALSGRLPSVPFETIQALDVVMRHLPSMRYTPVGR 180 
         ************************************************************ 
 
Bovine   SFFTASEGCSNPLGGGREVWFGFHQSVRPSLWKMMLNIDVSATAFYKAQPVIEFVCEVLD 240 
Human    SFFTASEGCSNPLGGGREVWFGFHQSVRPSLWKMMLNIDVSATAFYKAQPVIEFVCEVLD 239 
Porcine  SFFTASEGCSNPLGGGREVWFGFHQSVRPSLWKMMLNIDVSATAFYKAQPVIEFVCEVLD 240 
         ************************************************************ 
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Bovine   FKSIEEQQKPLTDSQRVKFTKEIKGLKVEITHCGQMKRKYRVCNVTRRPASHQTFPLQQE 300 
Human    FKSIEEQQKPLTDSQRVKFTKEIKGLKVEITHCGQMKRKYRVCNVTRRPASHQTFPLQQE 299 
Porcine  FKSIEEQQKPLTDSQRVKFTKEIKGLKVEITHCGQMKRKYRVCNVTRRPASHQTFPLQQE 300 
         ************************************************************ 
 
Bovine   SGQTVECTVAQYFKDRHKLVLRYPHLPCLQVGQEQKHTYLPLEVCNIVAGQRCIKKLTDN 360 
Human    SGQTVECTVAQYFKDRHKLVLRYPHLPCLQVGQEQKHTYLPLEVCNIVAGQRCIKKLTDN 359 
Porcine  SGQTVECTVAQYFKDRHKLVLRYPHLPCLQVGQEQKHTYLPLEVCNIVAGQRCIKKLTDN 360 
         ************************************************************ 
 
Bovine   QTSTMIRATARSAPDRQEEISKLMRSASFNTDPYVREFGIMVKDEMTDVTGRVLQPPSIL 420 
Human    QTSTMIRATARSAPDRQEEISKLMRSASFNTDPYVREFGIMVKDEMTDVTGRVLQPPSIL 419 
Porcine  QTSTMIRATARSAPDRQEEISKLMRSASFNTDPYVREFGIMVKDEMTDVTGRVLQPPSIL 420 
         ************************************************************ 
 
Bovine   YGGRNKAIATPVQGVWDMRNKQFHTGIEIKVWAIACFAPQRQCTEVHLKSFTEQLRKISR 480 
Human    YGGRNKAIATPVQGVWDMRNKQFHTGIEIKVWAIACFAPQRQCTEVHLKSFTEQLRKISR 479 
Porcine  YGGRNKAIATPVQGVWDMRNKQFHTGIEIKVWAIACFAPQRQCTEVHLKSFTEQLRKISR 480 
         ************************************************************ 
 
Bovine   DAGMPIQGQPCFCKYAQGADSVEPMFRHLKNTYAGLQLVVVILPGKTPVYAEVKRVGDTV 540 
Human    DAGMPIQGQPCFCKYAQGADSVEPMFRHLKNTYAGLQLVVVILPGKTPVYAEVKRVGDTV 539 
Porcine  DAGMPIQGQPCFCKYAQGADSVEPMFRHLKNTYAGLQLVVVILPGKTPVYAEVKRVGDTV 540 
         ************************************************************ 
 
Bovine   LGMATQCVQMKNVQRTTPQTLSNLCLKINVKLGGVNNILLPQGRPPVFQQPVIFLGADVT 600 
Human    LGMATQCVQMKNVQRTTPQTLSNLCLKINVKLGGVNNILLPQGRPPVFQQPVIFLGADVT 599 
Porcine  LGMATQCVQMKNVQRTTPQTLSNLCLKINVKLGGVNNILLPQGRPPVFQQPVIFLGADVT 600 
         ************************************************************ 
 
Bovine   HPPAGDGKKPSIAAVVGSMDAHPNRYCATVRVQQHRQEIIQDLAAMVRELLIQFYKSTRF 660 
Human    HPPAGDGKKPSIAAVVGSMDAHPNRYCATVRVQQHRQEIIQDLAAMVRELLIQFYKSTRF 659 
Porcine  HPPAGDGKKPSIAAVVGSMDAHPNRYCATVRVQQHRQEIIQDLAAMVRELLIQFYKSTRF 660 
         ************************************************************ 
 
Bovine   KPTRIIFYRDGVSEGQFQQVLHHELLAIREACIKLEKDYQPGITFIVVQKRHHTRLFCTD 720 
Human    KPTRIIFYRDGVSEGQFQQVLHHELLAIREACIKLEKDYQPGITFIVVQKRHHTRLFCTD 719 
Porcine  KPTRIIFYRDGVSEGQFQQVLHHELLAIREACIKLEKDYQPGITFIVVQKRHHTRLFCTD 720 
         ************************************************************ 
 
Bovine   KNERVGKSGNIPAGTTVDTKITHPTEFDFYLCSHAGIQGTSRPSHYHVLWDDNRFSSDEL 780 
Human    KNERVGKSGNIPAGTTVDTKITHPTEFDFYLCSHAGIQGTSRPSHYHVLWDDNRFSSDEL 779 
Porcine  KNERVGKSGNIPAGTTVDTKITHPTEFDFYLCSHAGIQGTSRPSHYHVLWDDNRFSSDEL 780 
         ************************************************************ 
 
Bovine   QILTYQLCHTYVRCTRSVSIPAPAYYAHLVAFRARYHLVDKEHDSAEGSHTSGQSNGRDH 840 
Human    QILTYQLCHTYVRCTRSVSIPAPAYYAHLVAFRARYHLVDKEHDSAEGSHTSGQSNGRDH 839 
Porcine  QILTYQLCHTYVRCTRSVSIPAPAYYAHLVAFRARYHLVDKEHDSAEGSHTSGQSNGRDH 840 
         ************************************************************ 
 
Bovine   QALAKAVQVHQDTLRTMYFA 860 
Human    QALAKAVQVHQDTLRTMYFA 859 
Porcine  QALAKAVQVHQDTLRTMYFA 860 
         ******************** 
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Table 3.4:  Percent identity of the pAgo2 nucleotide and amino acid 
sequences in comparison to bovine, human, and mouse. 
 

 Porcine  
 Nucleotide Amino Acid 

Bovine 94.2 99.6 
Human 92.2 99.5 
Mouse 89.4 99.2 

 
 
 
The original primer sets for pAgo2 fragments included Ia, II, III, and IV.  

Fragment sizes for each primer set are illustrated in Figure 3.2 and are as follows:  769 bp 

for Fragment Ia; 347 bp for Fragment II; 1,507 bp for Fragment III; and 1,434 bp for 

Fragment IV.  PCR product of Fragment III revealed two other products at 877 bp and 

575 bp.  These products were sequenced and determined by BLAST and sequence 

alignments to be shorter fragments of Ago2, with deletions occurring in the center of the 

fragment.  Sequence alignments for the smaller products (at 877 bp and 575 bp) showed 

deletions of 603 bp and 932 bp, respectively, occurring in the middle of the sequence 

(illustrated in Figure 3.3).  Sequence alignments of Fragment IV revealed a third deletion 

in the pAgo2 sequence, this one much smaller at 70 bp (Figure 3.3). 
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Figure 3.2:  PCR products of primer sets used for sequencing pAgo2.  
(A) Fragment Ia, 769 bp.  (B) Fragment II, 347 bp.  (C) Fragment IV, 
1,277 bp.  (D) Fragment III, three products at 1,507 bp, 877 bp, and 575 
bp.  (E) Fragment D2, two products at 1,277 bp and 345 bp.  (F) 
Fragment D3, two products at 232 bp and 162 bp. 
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Figure 3.3:  Illustration of pAgo2 sequence deletions.  The top line is the 
complete sequence for each fragment.  (A) Fragment III sequences:  1,507 
bp, 877 bp, and 575 bp respectively.  (B) Fragment IV 70 bp deletion.   
The solid strands indicate where the sequences align with the top strand; 
the dotted sections represent deleted sequence in the alignment.   

 

 

Primer sets D2 and D3 were designed to these deleted sections (Figure 3.4) in 

order to confirm the presence of these deletions in the pAgo2 sequence.  Presuming the 

deletions are present, the primer sets would amplify three products for D2 at 1,277 bp, 

962 bp, and 345 bp and two products for D3 at 232 bp and 162 bp.  We were only able to 

reproducibly amplify and clone two products for D2, which were 1,277 bp and 345 bp 

(Figure 3.2).  Both D3 products were visible upon re-amplification of the PCR product 

(Figure 3.2).  Sequencing and BLAST confirmed all of these products as Ago2.  Deleted 

segments are noted on the pAgo2 translation alignment in Table 3.3. 
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Figure 3.4:  Illustration of primers designed for pAgo2 sequence 
deletions.  (A) D2 primers should give three products.  (B) D3 primers 
should give two products. 

 
 
Expression Data 

 Preliminary expression data of Ago2 in sperm, oocytes, and embryos indicated 

that Ago2 is expressed in porcine MII oocytes and hatched blastocysts.  The data also 

indicated that Ago2 is not expressed, in detectable quantity, in sperm or 8-cell embryos 

(Figure 3.5).   

 

 
Figure 3.5:  Ago2 endpoint PCR agarose check-gel in porcine sperm, 
oocytes, and embryos.  Lanes:  molecular weight ladder; (-) negative 
control: H2O blank; (+) positive control: Dicer in MII oocytes; Sp:  
Sperm;  MII:  MII oocytes;  8c:  8 cell embryo; HB:  hatched blastocysts. 
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Discussion 

Cloning and sequencing of pAgo2 indicate that Ago2 is highly conserved among 

species.  Sequencing also revealed two possible deletions, in the pAgo2 coding sequence, 

that have not previously been reported in the literature.  This is not entirely surprising, 

however, since many reported sequences are computer-generated predictions that are not 

often verified experimentally.  Furthermore, given that Ago2 is highly conserved among 

species, it is predicted that these variants are likely expressed in other species as well. 

The first deletion (Variant 1) occurs in the 5’ region, encompassing a domain of 

unknown function and the PAZ domain (illustrated in Figure 3.6).  As a nucleic acid 

binding domain, the PAZ domain is responsible for binding the 3’ end of miRNA.  

Without this domain, the Ago2 protein would, theoretically, be unable to bind miRNA.  

The implications of having this type of Ago2 variant could be of great interest.  For 

instance, if during certain stages of development the general up-regulation of mRNA is 

necessary, splicing of the Ago2 message into a variant incapable of binding miRNA 

would act much like an inhibitor to the inhibitor (miRNA).  That is, Ago2 would be 

unable to carry miRNA to its target, and therefore the mRNA would not be degraded 

(illustrated in Figure 3.7).   

The shorter deletion (Variant 2) in the 3’ region occurs in the Piwi domain (Figure 

3.6).  The Piwi domain of Ago2 is the nuclease responsible for the mRNA cleavage that 

is characteristic of RNAi.  Similar to RNase H, three residues within the Piwi domain 

form a catalytic triad.  The human catalytic triad for Ago2 is D(597), D(669), and H(807) 

(Rivas et al, 2005; Song et al, 2004).  The deletion in this region of pAgo2 does not 
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encompass these active sites, and therefore may have little effect on the nuclease activity 

of this domain.  However, Ago3 is catalytically inactive even though the catalytic triad is 

conserved (reviewed by Meister and Tuschl, 2004).  This may indicate that 

posttranslational modifications or interactions with specific proteins may modify the 

activity of Ago proteins.  The implications of this type of Ago2 variant are also of 

interest.  If the Piwi domain of pAgo2 Variant 2 is inactive, this protein would retain its 

ability to bind miRNA (unlike Variant 1) but would not be able to degrade the target 

mRNA.  In this case the Ago2 variant might function to sequester the target mRNA, 

which could then be released at a later time (illustrated in Figure 3.7).   

 

 

 
 

Figure 3.6:  Schematic of pAgo2 sequence deletions.  (A) Full length 
pAgo2, (B) 5’ deletion, (C) 3’ deletion. 
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Figure 3.7:  Proposed mechanisms for Ago2 Variants 1 and 2. 
 

 

Our expression data indicated the presence of Ago2 in porcine ovary, oocytes, and 

blastocyst embryos.  These data indicated that the pAgo2 message of maternal origin is 

lost or drastically decreased at the 8-cell stage but rebounds by the Day 7 blastocyst 

stage.  These data support other observations identifying miRNA pathways present 

during embryonic development and the possible impact miRNA has on porcine 
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embryonic development.  This indicated that maternal Ago2 is present in oocytes, but is 

depleted by the time the embryo reaches the 8-cell stage.  At the hatched blastocyst stage, 

the embryo is likely producing its own Ago2 protein.  Further work is needed to elucidate 

pAgo2 expression in other early stage embryos (i.e. 16-cell, morula, expanded 

blastocyst), as well as to determine if the ontogeny or level of pAgo2 expression can 

impact embryo development and differs between in vivo and in vitro produced embryos. 

Research has indicated that Ago2 is required for the miRNA-mediated cleavage 

of mRNA and is essential for normal development.  Characterizing Ago2 ontogeny 

throughout porcine embryonic development will begin elucidating miRNA involvement 

during early development in this species.  Furthermore, once normal pAgo2 expression 

during embryonic development has been described, studies can be done to evaluate 

aberrations in Ago2 expression that may occur in developmentally compromised 

embryos.  Ultimately, characterizing the miRNA pathway during porcine embryonic 

development may offer valuable insight into potential causes of aberrant embryonic 

development. 
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Appendix A 

Various Methods 

 

Southern Blotting and Detection 

For southern blotting procedures, protocols outlined in Current Protocols in 

Molecular Biology (1999) 2.9.1-2.9.20 were used; details and changes are as follows.  

PCR product was subjected to slab gel electrophoresis using a 1.2 to 2.0% TBE agarose 

gel; products less than 300 bp were run on a 2% gel, all others were run on a 1.2 to 1.5% 

gel.  Gels were blotted overnight onto Sigma Nylon BioBond Membranes (St. Louis, 

MO) using a Whatman wick setup.  Membranes were UV cross-linked twice, left to dry, 

and stored until detection.   

Amersham Biosciences’ Gene Images AlkPhos Direct Labelling and Detection 

System (Piscataway, NJ), used in conjunction with CDP-Star chemiluminescent detection 

reagents, were used for southern blot detection. 
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Appendix B 

Various Results 

 

Table A.1:  Protein properties of pDicer. 
 

Analysis Entire Protein 
Length 1,916 aa 
Molecular Weight 216,844.06 m.w. 
1 microgram = 4.612 pMoles 
Molar Extinction coefficient 199080 
1 A[280] corr. to 1.09 mg/ml 
A[280] of 1 mg/ml 0.92 AU 
Isoelectric Point 5.66 
Charge at pH 7 -37.52 

 

Table A.2:  Protein properties of pAgo2. 
 

Analysis Entire Protein 
Length 860 aa 
Molecular Weight 97,378.32 m.w. 
1 microgram =  
Molar Extinction coefficient  
1 A[280] corr. to  
A[280] of 1 mg/ml  
Isoelectric Point 9.35 
Charge at pH 7  
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